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Introduction 

The Government of Ethiopia envisages fostering food security and increase agricultural 

production by extending cultivated area for example through leasing out large areas of 

agricultural land to foreign and domestic investors. Experience so far show, that these large 

scale land acquisitions (LSLA) have not delivered the envisaged benefits so far. In order to 

track successful development and implementation of such leases there is a need for monitoring 

the implementation of these agricultural projects. To overcome this shortcoming, the Ethiopian 

Horticulture and Agricultural Investment Authority (EHAIA) with the support of GIZ is 

currently working on the establishment of a monitoring tool based on satellite remote sensing 

data. Monitoring results would allow to describe the state of land use for every LSLA in 

Ethiopia on a regular basis and thereby assess the performance and compliance of the 

agricultural investors. Free satellite images from the Copernicus earth observation program and 

visual interpretation of these data could constitute a basic version of the tool that would enable 

basic monitoring functions at very low costs and little technical requirements. The tool could 

be further elaborated to generate detailed information e.g. on the spatial distribution and vital 

status of specific crops by incorporating additional remote sensing data and sophisticated 

algorithms for analysis. Thereby, the tool becomes flexible and could be used for other spatial 

planning context e.g. in the forest sector. 

Problem Statement 

Ethiopia has made substantial progress in boosting food production and reducing hunger and 

malnutrition over the last two decades. However, Ethiopia has remained food insecure, with 

food deficit each year. The Government of Ethiopia five-year strategy, “Growth and 

Transformation Plan (GTP)”, envisages that Ethiopia becomes a food-secure, middle-income 

country by 2025 and increases output of major crops from 19 to 27 million tons during the 

period of the plan [1].  

To increase private investment in the agriculture sector, areas suitable for large-scale 

agricultural investments (LSAI) have been identified to be allotted to investors. As a result, 3.6 

million hectares of land were identified out of which about 2.4 million hectares of land 

transferred to investors for agricultural investments by the federal and regional government 

agencies over the period up to 2014. On the national level, EHAIA is mandated to guide and 

administer the areas suitable for large-scale commercial farming. It is responsible for 

facilitating agricultural investments as well as land administration and transfer processes. 

Large-scale agricultural investments are expected to bring foreign currency as well as 

technology transfer to the country, while the local communities would benefit from 

employment, technology and infrastructures related to these investments according to a trickle-

down effect. Proper design and implementation of these projects would allow the achievements 

of these Government policy objectives. 

Progress towards achieving these objectives has been rather limited so far. Out of the 2.4 million 

ha of land transferred to about 6,000 private investors, only one-third has been developed by 
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these investors until 2014. Same plots have been given out to different investors, and many 

investors have not used provided land productively, even years after the contractual start. 

Besides the remoteness of many investments sites and corresponding infrastructural problems, 

partly agro-ecological unfavourable conditions or overlaying land use claims, administrative 

capacity constraints hamper the Government’s efforts to promote sustainable large-scale 

commercial agricultural development. One major shortcoming in administrating LSLA is poor 

geo-information, which is needed throughout the whole investment process:  

� Before the investment: The choice of location has to be based on an intensive 

investigation of prevailing land uses and the natural endowment. The replacement of existing 

agricultural or housing activities should be prevented and unused land without important 

ecology value, but with favourable agro-ecological conditions should be prioritized for the 

allocation of LSAI. Such information-based planning is crucial for a conflict-free and 

productive investment.  

� During the investment: Spatial monitoring of the investment is needed to control the 

investment spatially and timely evolves as fixed in the contract. Such spatial monitoring 

enhances compliance of contracts and guiding of investments. 

EHAIA has little capacities to collect needed spatial data and to process this data to relevant 

information. This is especially true for in-situ data collection at the (potential) investment sites. 

Solution 

A promising solution to alleviate problems related to spatial information is utilizing earth 

observation (remote sensing, RS) for monitoring agricultural activities within LSAI areas. It 

provides repetitive, timely, and objective information about the surface of the earth from a 

distant platform, usually a satellite or airborne sensor, or unmanned aerial vehicle (UAV). This 

platform collects reflected electromagnetic radiation over large regions and processes the data 

into a digital image and finally into digital maps. RS data as the ones which are freely available 

with Sentinel-1 (S1) and 2 (S2) from the recently launched Copernicus earth observation 

program1 of the EU constitute a major asset for this kind of application [2,3] and provide an 

unprecedented opportunity to monitor also fragmented agricultural landscapes with small-scale 

farming such as in Ethiopia. Time series2 of Sentinel data reach expectations for agricultural 

monitoring in many regards: frequent (S1 every 6 days, S2 every 5 days), systematic and full 

coverage with free, high-resolution data (S1 up to 5x5m pixel size, S2 up to 10x10m pixel size) 

support agricultural monitoring even at the field level. S1’s payload is a Synthetic Aperture 

Radar (SAR) operating in the radar’s C-Band (microwave). It is hence not affected by 

atmospheric conditions (clouds, aerosols). The complementarity of the sensor attributes (SAR, 

optical) enhances the accurate recognition of crop types, crop acreage estimation, and the 

separation of land cover categories [4,5]. The Copernicus program operates four satellites of S1 

and S2 each, to guarantee data availability at least until 2027 (with “next generation” versions 

beyond). This together with the “free and open” policy for Sentinel data and with the rapidly 

decreasing costs of local and cloud based IT infrastructure, provides a suitable basis for 

initiating a long-term monitoring tool in Ethiopia [6]. Existing projects like JECAM3 

                                                

1 http://www.copernicus.eu 

2 A “time series” refers to a set of consecutive images acquired from one region along a given time frame, e.g. 

along the growing season within one year. 

3 http://www.jecam.org 



3 

 

convincingly demonstrate the utility of RS for agricultural monitoring in various agricultural 

landscapes in Africa. 

Open and free geographical information systems (GIS4) enable the storage, management and 

analysis of large quantities of such spatially distributed data, which are associated with their 

respective geographic features (e.g. agricultural fields). These two applications merge, when 

the remotely sensed data used for mapping and spatial analysis is overlaid with other spatial 

GIS data of the same geographic site. It is a scientifically sound, proven and potentially cost-

effective approach [7], that can be maximized for accurate cropland mapping in smallholder-

dominated Savannah landscapes [8,9], burnt area mapping [10], land cover mapping in 

Ethiopia. [11,12]. Therefore, it is suitable to assess agricultural activities in LSAI areas in 

Ethiopia [13]. [13] first explored and demonstrated the potential of using Sentinel data for land 

conversion monitoring in Gambella. Likewise, previous studies point to the potential cost-

effectiveness of RS for agricultural statistics [7].  

Thus, EHAIA with support of GIZ and the EU is currently developing an operational, 

agricultural monitoring system, based on the aforementioned user needs and requirements. It 

concentrates on defining an integrated, low-cost tool primarily based on multi-sensor RS data, 

which shall satisfy the needs of the national level users, especially for knowledge about LSAI 

areas (i.e., cropped area and crop acreage, evolvement monitoring). It is supposed to (i) 

regularly deliver this information for each LSAI and (ii) to bring added value and savings to 

existing ground surveying techniques or where ground surveying is restricted. The tool can 

support monitoring single investment sites and supports assessing whether and to what degree 

an investor of a LSAI is compliant with the contractual agreements. 

The development of the tool is technically supported by MapTailor Geospatial Consulting GbR 

and incorporates advise from the Joint Research Center of the European Commission. 

Concepts of Operation 

As a first step of conceptualization, it was examined which prerequisites (technical, system, 

software, personnel) and processing routines (e.g. algorithms, workflows, tools) meet different 

requirements best. Such a tool and the information that it delivers to the end users can be of 

various degrees of sophistication. The functionalities of a monitoring tool, which satisfies the 

user´s information demand, can be regarded as “modules” and added on demand. An increasing 

information demand thus goes along with an increasing number of functionalities, a higher 

demand of different input data (for example, reference data) and higher prerequisites in terms 

of the skills of the operators of such a tool, or processing power of the IT infrastructure. Setting 

up a monitoring tool is not a “one-of” process. Whilst a basic system could primarily focus on 

cultivated land delineation and supporting surveys, a more sophisticated version could be 

progressively built as an extension of the basic system. Thus, the implementation of such a tool 

can be considered as a phased approach from basic to more sophisticated. The following section 

exemplarily presents a simple (basic) and enhanced-basic (basic +) manifestations of this 

modular concept. These basic versions have little technical requirements and depict a good 

starting point to establish the monitoring tool. As stated before, the tool could be further 

enhanced with more sophisticated ways of analysis which would generate detailed information 

and enable further applications. However, more sophisticated manifestations of the tool are not 

                                                

4A GIS is a computer based technology consisting of hardware, software, data and applications. It allows capturing, 

editing, storing, reorganising, modelling and analysing all forms of geographically referenced information. With 

the help of GIS, data can be interpreted and visualised in many ways that reveal relationships, patterns and trends 

in the form of maps, reports and charts. 
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explained in this paper, as the next steps of implementation will initially focus on the basic 

versions.  

Basic version and basic version +  

The rationale behind the basic option is to ensure maximum utility for providing basic spatial 

information for mapping and tracking the spatial evolvement of commercially cultivated areas 

(CCA ) within the investment sites of a contracted LSAI. At the same time, it shall help to reach 

a compromise between limited budget and personnel capacities available for ground surveys, 

sampling correctness, and quality of information provided. The basic monitoring tool uses 

freely available satellite images from the Copernicus earth observation program to produce 

georeferenced products (digital maps) at the end of the season annually. Such maps are 

characterised by a classification that entails several land use/land cover (LULC) classes. The 

basic monitoring tool helps to monitor single investment sites and assessing if an investor is 

compliant with contractual agreements. 

The workflow for the basic version can be summarized as followed: 

(i) Downloading optical and SAR satellite images from the Sentinel missions. 

(ii) pre-processing these data sets, e.g. clipping data on areas of interest, atmospheric 

corrections, etc.;  

in case of option “basic +”: gathering reference data from e.g. field surveys or 

existing high resolution images. 

(iii) Transforming the data into information - here: digital maps of LULC by visual 

interpretation. For the visual interpretation of satellite images, additional steps could 

be undertaken to enhance the visibility and accurate detection of spatial structures 

in satellite images that indicate the presence of commercially cultivated areas 

(CCA), for example the establishment of (canals, road) infrastructure and land 

clearance (detection of burnt area). As a proof of concept, next to the pre-processed 

images, false colour composites were displayed in the open and free GIS “QGIS”, 

and a principal component analysis (PCA) and unsupervised image classification 

using k-means algorithm have been performed to support the interpretation;  

in case of option “basic +”: preparation from training and validation data derived 

from reference data, supervised image classification 

(iv) Visualizing the results as digital maps, reports, and statistics.  

 

Following chart summarizes the general workflow for the basic options:  
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Figure 1: General workflow of the basic module 

Setting up the tool requires a high performance IT infrastructure, 1-2 staff and optionally field 

assistants. The processing chain can either be done manually using free and open software 

packages, which is relatively straightforward to implement, or be largely automated by coding 

in programming languages, allowing significant time and thus cost savings after the initial setup 

phase. The initial setup phase is estimated 1–3 years and should be framed by user/stakeholder 

workshops and trainings. 

As foreseen for the basic approach, unlabelled map products can be delivered annually in 

GeoTIFF format and are dedicated for manual interpretation through the system operators. The 

maps in Figure 2 show these deliverables, which enable separating CCA from non-CCA derived 

from visual interpretation. The unsupervised classification even revealed various cropping 

intensities / stages of development in CCA and supported the visual interpretation. 

 

 

Figure 2: Left: Examples of maps used to assist the visual image interpretation and identification of CCA. A: S2 PCA, B:S1 

PCA, C: NDVI 3-monthly composites, and D: unsupervised classification. Right: CCA actually cultivated and other CCA 

prepared /developed for cultivation, delineated by on-screen digitization in QGIS. 
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The basic + option foresees a supervised image classification using a machine learning 

algorithm, for example Random Forest (RF) [14,15] or Support Vector Machines (SVM) [15–

17]. To do so, training data (i.e., pixel coordinates and associated class labels) are used to train 

a classifier algorithm and to classify the pre-processed times series (S1 and S2). This can 

completed on demand by an a-posteriori filtering for smoothing out minor errors in the resulting 

maps and to create more accurate and visually appealing maps (see figure 3), as was done in 

the PoC and other studies in Ethiopia [11]. 

 

Figure 3: Example of a map created by supervised image classification including post-processing filtering in Gambella. 

Non-active CCA includes land prepared and developed (e.g. vegetation clearance, infrastructure like roads and canals) for 

CCA, see image subset A. Sentinel-2 image false color composite (vegetation in red color) in the small image subsets 

support the visual interpretation. The area is a mix of cleared areas, some of which are already cultivated (image subset 

B), and areas that are not yet cleared. 

Second to the last step of the processing chain, the quality of the maps is quantitatively assessed, 

based on independent (external) validation data for creating detailed accuracy assessments 

[18,19,20]. This serves the purpose of providing users with validated algorithms and 

information about the quality of the maps. Validation data is used to assess the map quality 

through the calculation of confusion matrices[18]. Such confusion matrices compare, on a 

class-by-class basis, the relationship between the validation data and the corresponding results 

of the classification. The predefined quality aim of the final product is an overall accuracy of 

85%, preferably with higher per-class accuracy for CCA. 

Conclusion 

A regular, accurate and cost effective spatial monitoring of every LSAI in Ethiopia with satellite 

data is feasible. It provides a solution for spatially consistent, timely and objective information 

retrieval about spatial evolution of commercially cultivated areas. Using satellite data enables 

monitoring land use state and land conversion where local data is not sufficient or 

comprehensive ground surveys are limited. A detailed prove of concept revealed how open and 

free software, in conjunction with the free Sentinel satellite data from the Copernicus earth 

observation programme reaches expectations for an accurate and low-cost agricultural 

monitoring even at the parcel level. Accuracies of maps can be higher than 85% (for certain 

land use / land cover categories even higher than 90%). 

The actual implementation of the monitoring tool would require some initial investments in an 

appropriate IT infrastructure and personnel and should be preceded by measures of user 

requirement evaluation, to tailor the specifics of the tool and its actual implementation to the 

requirements and capacities of the mandated agency. 
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