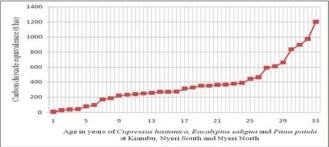
First Annual Conference on Climate Change and Development in Africa (CCDA-I)

United Nations Conference Centre, Addis Ababa, Ethiopia, 17-19 October 2011

ESTIMATION OF ABOVEGROUND AND BELOWGROUND CARBON SEQUESTRATION OF CUPRESSUS LUSITANICA, PINUS PATULA AND EUCALYPTUS SALIGNA PLANTATION SPECIES IN KENYA.

Oeba Vincent Onguso¹, Otor C.J². Samuel, Kung'u B. James² and Shisanya C^{2*}.


INTRODUCTION

- Carbon sequestration has become a crucial service forests provide.
- ❖In Kenya, Cupressus lusitanica, Pinus patula and Eucalyptus saligna are among common exotic plantation species.
- ❖They grow fast, a characteristic that makes them remove more CO₂ from the atmosphere than they would release.
- Little has been done in estimating carbon aboveground and belowground of these species

RESULTS AND POLICY IMPLICATIONS **Significant differences (n<0.01) am

❖ Significant differences (p<0.01) among species & across sites on carbon sequestered.

Mean carbon (MgC ha ⁻¹)			
Tree species	Kiambu	Nyeri North	Nyeri South
Cupressus			
lusitanica	98.4	62.5	91.8
Eucalyptus			
saligna	79.9	55.5	247.9
Pinus patula	87.2	145.6	72.7
s.e.d.		44.4	

Indicates a significant potential in reduction of GHG that need factored carbon policy & NAMAs

Objective

❖To estimate carbon sequestered by commonly grown plantation species across different ages and sites in Kenya.

MATERIALS AND METHODS

- ❖ Plots measuring 20 by 50 m were established in forest plantation of the selected species of different ages
- ❖ Data collection: DBH, height and crown
- ♦ CO₂FIX V3.1 modelling framework as outlined by Masera et al. (2003) was used for quantifying carbon.

❖BEF of 1.3 was used

KEY CONCLUSIONS/ KEY MESSAGES

- **❖** Carbon quantification should be species specific to strengthen REDD+ and MRV as well as National carbon accounting systems (NCAS).
- ❖ Need to develop local biomass allometric equations that are species specific with suitable BECF for MRV.
- Consider the aspect of tree species in climate change adaptation policy

ACKNOWLEDGEMENT

KEFRI Board of management for provision of funds CCDA for sponsorship to participate and attend conference

¹Kenya Forestry Research Institute; <u>voeba@kefri.org</u>; <u>voeba@yahoo.co.uk</u>; +254-720-475053

²Kenyatta University, School of Environmental Studies, Department of environmental Sciences

^{2*}Kenyatta University, School of Humanities and Social Sciences, Department of Geography