The 8th Climate Change and Development in Africa (CCDA-8) African Union Commission

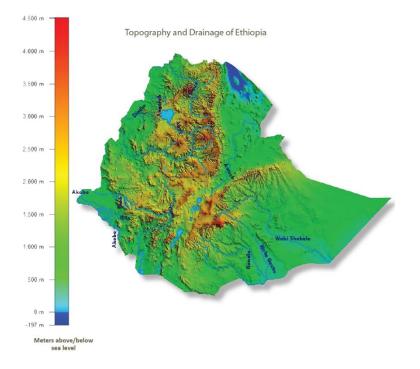
Ministry of Water, Irrigation and Electricity

Addis Ababa, 27 August 2019

Solar and Wind Energy Resources for Off-Grid Electricity Access - Ethiopia

> Ethio Resource Group Hilawe Lakew <u>hilawe.LT@gmail.com</u> <u>T: +251 912 629423</u>

Ethiopia people, land


Population: 105 million (2.4% growth)

Surface area: 1.1 million km² (1/3 of

area above 1500 masl)

Population density: 95/km² (2/3 live in 1/3 of area or highlands)

Urbanization: 20% (urban pop growth 4.7%, 80+ million live in rural areas)

Energy supply

Energy consumed (2017): 39Mtoe

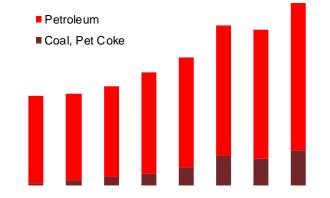
- 0.37 toe per capita
- 85% in primary biomass (wood, agriresidues) + 3% in derived biomass (charcoal, ethanol)
- 9% petroleum, 1% coal
- 2% electricity

Biomass consumed in homes for

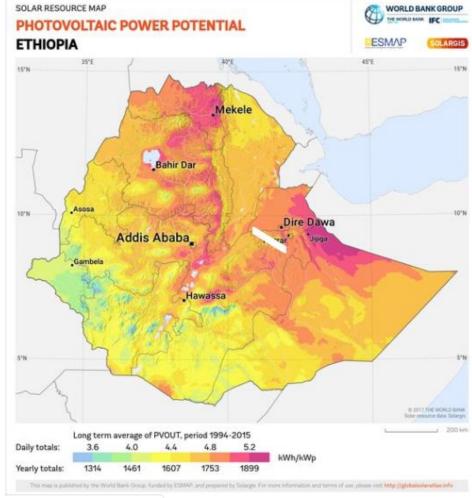
cooking

Energy use

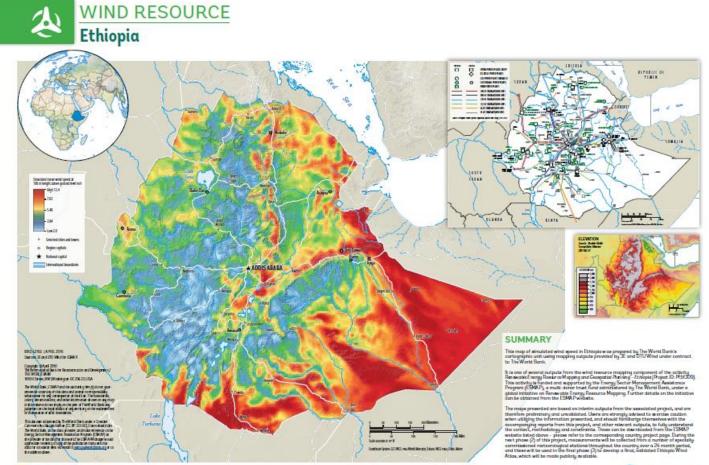
Biomass:


 0.9 t biomass per capita (grows as fast as food consumption)

Hydrocarbons:

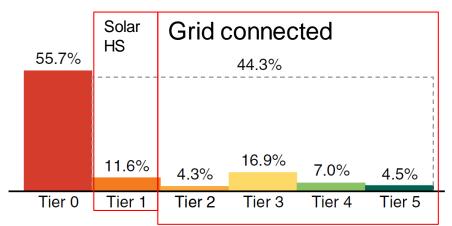

- Consumed in transport (liquid petroleum) and industry (coal, pet coke)
- 8%y growth for petroleum, 30%+ growth for coal /pet coke

Electricity:


- Consumed 42% by homes, 36% industry, 22% services
- Exported 10% of production

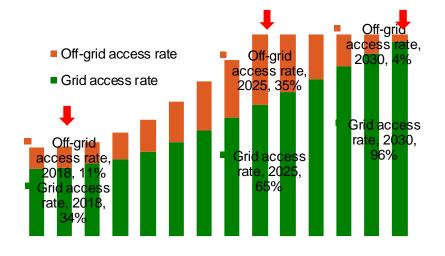
Solar and Wind Energy resources

Solar and Wind Energy resources


Electricity access

Access: 44% of households

- 33% connected to the grid
- 11% served with off-grid (mainly solar lanterns/home systems)


Electricity consumption level

- 86 kWh per capita (total)
- 54 kWh per household (residential customers connected)

Electricity plan for access

- Plan for electricity access
- Reach 100% access in 2025 (65% from grid, 35% off-grid)
- Reach 96% grid access in 2030
- 8.2M grid connections, 5.9M off-grid connections during 2019-2025

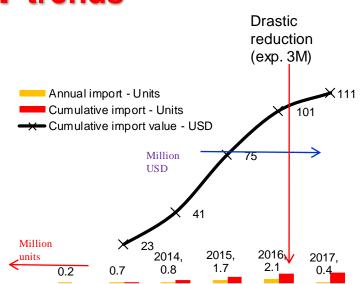
Rural electrification status

Rural households with access (2017) -

27% (12% from grid, 15% off-grid solar)

Those without access

- Households 70M+
- MSEs 100k+
- Social institutions (health, school) -1000s
- Smallholder agriculture


Rural electrification trends

Slow rate of rural customer

connection (although relatively successful area coverage; >50% of sub-district centers are connected to the grid)

Very fast off-grid access through solar lanterns/HS (drastic fall in solar system sales in the past 2 years due to hard currency limitations, other factors)

Over the past five years, fuel based lighting has fast disappeared

Rural electrification NEP

Investment required

- USD 4.6 billion (56% on grid, 44% off-grid) during 2019-2025
- USD 3.1 billion sought from external sources

Figure ES.14 Breakdown of grid and off-grid investments and syndication scenarios for universal access, 2025

	Investment (US\$ million)	GoE contribution (US\$million)	Syndication (US\$million)
A. Grid program			
Grid total investments* (\$370/connection)	3,200		
Customer contribution ()	(1,100)		
Total	2,100	480	1,620
B. Off-grid program			
Access to finance (with a revolving fund)	1,760	530	1,240
End-user subsidy	72	72	-
Social Institutions	230	70	160
MST off-grid solar	133	41	92
Mini-grids (MST and EPC)°	300	280	20
Off-grid total investment syndication	~2,500	~1,000	~1,500
C. Program implementation support (grid and off-grid)	50	20	30
Total Investment syndication (A + B + C)	4,650	~1,500	~3,150

MTF=Multi Tier Framework MST=Minimum Subsidy Tender

Opportunities

Off grid energy

- Large off-grid pop (>70M), MSEs (100k?), social institutions
- Small agri, irrigation, preservation, processing
- Medium & Large Agri/Agri-Industry
- Imbedded generation (sale to the grid)
- Captive market (industries, refugee settlement, etc)
 - Technologies for management (control/monitor, payment)
 - Low off-grid system costs (\$↘) vs. high grid costs

Distributed systems

- Distributed resources (energy, capital, management); additional resources to grid, transport, thermal energy
 - S&M Hydro \cong 50% of tech cap.
 - Biomass/waste/biofuels forest waste, bamboo, agri-process waste, landfill, wastewater

Rural electrification settlements

Amhara, East Gojam Zone, Baso ena Lisen Wereda, Yedege Kebele [10.0869019 37.7672966]

Oromia, West Shewa Zone, Jeldu/Gojo Wereda, Tulu Gura Kebele [9.164153 38.08337]

Oromia, West Shewa Zone, Jeldu/Gojo Wereda. Tulu Gura Kebele [9.164153 38.08337]

Amhara, East Gojam Zone, Baso ena Lisen Wereda, Yedege Kebele [10.0869019 37.7672966]

Potential for Mini or Micro Grids

Settlement patterns determine potential for mini or micro grids:

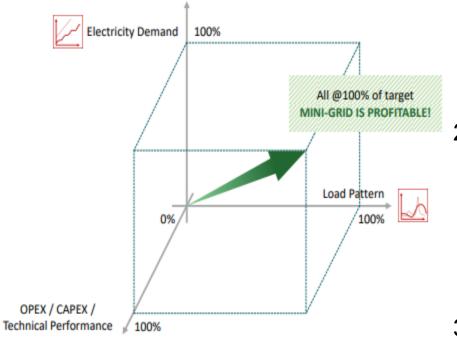
- Mean number of households per kebele 1035
- Housing density outside Kebele Centers

 30 to 250 households per square kilometer

Somalie, Fafan Zone, Kebribeya Wereda [9.09194 43.08093]

Afar, Zone 2, Berhale Wereda. Degala Kebele [13.7528009 39.8849025]

Potential for Mini or Micro Grids


Sample settlement patterns:

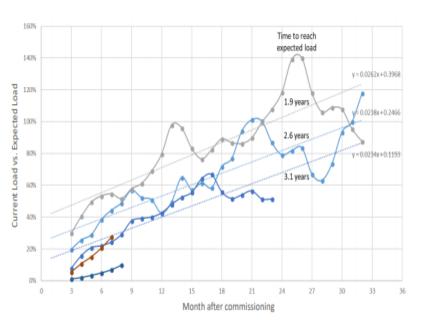
- 1) Households in Kebele Centers 10 to 20%
- 2) Clusters of households outside kebele centers 10 to 20%
- 3) Scattered households 60 to 80%

Benefits of Mini or Micro Grids

- Eliminate upfront investment commitment from consumers (fee for service)
- May provide wider access for productive use (i.e. productive use need to be intentionally integrated with system development by developers)
- 3) Potential to optimize investment to power utilization
- Better system monitoring and control, better quality service by a trained operator.

Source: Green Mini-grid Help Desk, Solar Mini-grid Policy 2, Nico Peterschmidt, Feb 2019

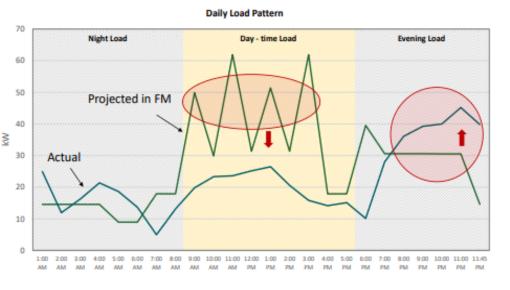
Operational Risks of Minigrids


1) Electricity Demand Risk

- Expected demand development over time
- Studies indicate growth is linear unless affected by external circumstances

2) Load Pattern Risk

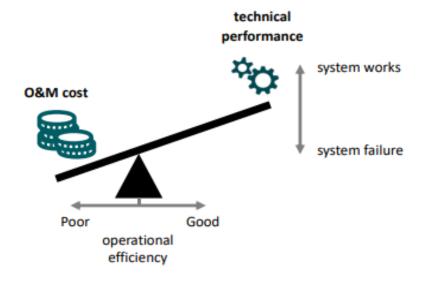
- Peak load, day time load
- Battery size optimizes financial performance
- Depreciation of battery CAPEX over time increases LCOE
- 3) Overspending and Technical Performance Risk
 - Increase capital and/or operating expenditure



1) Factors that affect Electricity Demand Growth

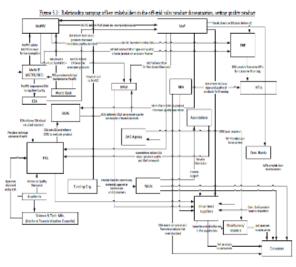
- i. Trust of minigrid operator by the community as a basis for local investment into productive use of electricity
- ii. Locally available microfinance for the establishment of micro-business;
- iii.Creativity and education level of local business persons in making use of the new opportunities
- iv. Availability of off-takers for locally manufactured goods (access to markets);
- v. Availability of providers of electric machines and appliances, as well as repair-shops in the community;
- vi.Success of electricity customers in remittances to increase the local standard of living;
- vii.Degree to which additional income generated is converted into electricity expenditure (is subject to the degree of individual household risk-aversion)
- viii. Availability of public funds to cover electricity expenses incurred by government institutions (i.e. social institutions, community eater supply systems, etc). 18

Operational Risks of Minigrids



- 2) Load Pattern Risk Mitigation Strategy
 - Demand management through the application of Time of Use Tariffs(TOU) to shift/distribute electricity consumption to daytime
 - ii. Load management through switching socalled deferrable loads to increase daytime consumption (i.e. water pumps, grain milling, etc,
 - iii. Adjustment of system design through additional battery capacity

Operational Risks of Minigrids


3) Overspending and Technical Performance Risk

- i. Increased capital expenditure can be avoided by efficient and effective project management
- Use of information technology help reduce operation costs and system failure (i.e. early warning systems for maintenance requirement)
- iii. Operation efficiency determines system reliability

Current Challenges

- Limited access to finance (to businesses and consumers)
- Lack of guarantee for investment
- Unclear bureaucratic procedures (i.e., regulation)
- Undeveloped distribution chain
- Limited use of ICT
- Capacity limitation 8.2M on grid, 5.9M off-grid connections in 6 years. Local technical and management capacity is low.
- Technology localization (i.e. policy, r
- Uncertainty because of changing directives
 - Lack of clarity in implementation of regulations (what to regulate, how to regulate, when to regulate)

Thank You