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Abstract

In this paper we analyse the effect of access to public infrastructure, i.e. safe water

and health facilities, on child nutritional status defined by height-for-age z-scores in

Senegal. Quantile regression methods are used to achieve a more complete picture of

the infrastructure effect. This technique has an advantage over the traditional ordinary

least squares method as it does not assume a constant effect of the explanatory variables

over the entire distribution of the dependent variable. To deal with the potential

endogeneity of household expenditures in a child health production function, we use

instrumental variables methods. To the best of our knowledge, this paper provides the

first empirical analysis of the impact of public infrastructure on child health using an

instrumental variables quantile regression approach. Contrary to OLS estimates, we

find that access to safe water improves the height-for-age of the lowest (10th) quantile

and the effect of health facilities is significant for the 10th, 25th, 50th percentiles at

the national level. However, in rural areas, only health facilities have a positive and

significant effect on child health. The heterogeneity of this effect is shown using quantile

regression, and we find that the effect of health facilities is more important to the

lowest quantile and is decreasing. Safe water also improves child health up to the 10th

percentile.
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1 Introduction

Malnutrition seriously affects the survival and early development of children, and the health

of pregnant and nursing mothers. It also determines overall resistance to diseases and future

performance in school and at work. Nutrition is therefore, a major health sector priority in

developing countries. Child health is particularly important because of its link to child poverty

and also to the accumulation of adult human capital. Better health and nutrition have been

found to pay-off in terms of economic growth as well as equity concerns. The improvement of

child health and nutrition of poor children has been regarded as an efficient way of improving

school attendance and enhance economic growth because learning translates into gains in long

run productivity. Several of the Millennium Development Goals of the United Nations deal with

child malnutrition, including the goal to halve by 2015 the number of people living with hunger,

and the goal to reduce child mortality by two-thirds.

The current paper explores the potential effects of access to public infrastructure such as

safe water and health services on child malnutrition status in Senegal. In the literature on child

health determinants, this relation is not clearly addressed. Horton (1986) analyzing the effect

of family size on child nutrition in the Philippines, found that access to a public pump improves

child nutritional status measured by the height for age z-score. However, the distance to family

planning centres is not significant in child health production function. Handa (1999) obtained

the same result in Jamaica. Using a large household survey from rural Central Java to address

the relationship between formal education and nutrition knowledge, Block and Webb (2003)

showed that the distance to water and the proportion of households having an access to tap

water do not affect child nutrition in Indonesia. David, Moncada, and Ordonez (2004) used two

data sets from Nicaragua and Honduras to analyze the private and public determinants of child

nutrition. They found that community variables such as public health infrastructure (measured

by the proportion of household with tap water within the house and proportion of households

with a toilet or a washable latrine) and health care services (measured by the average distance

from the nearest health center) do not appear to have an impact on the nutritional status of

children in Nicaragua. However, in Honduras, the proportion of households with tap water

is positively correlated with long term malnutrition, i.e height-for-age, but not with wasting

(weight for age), and the time to reach a health centre is not significant. Christiaensen and

Alderman (2004) found that Ethiopian households who drink water from own tap improve their

children nutritional status captured by height for age. But the distance to the nearest health

center has no effect on child health. Valdivia (2004) offers empirical evidence on the impact

of the expansion in health infrastructure of the 1990s upon child nutrition in Peru using three

rounds of the Demographic and Health Surveys (DHS). For health infrastructure, he constructed

an index using principal components methods. None of the sanitary variables has an effect upon

child nutrition status. However, he found a positive effect of this expansion in urban areas

on child long term nutritional status, which is not the case in rural areas. Furthermore, the

effect on urban children is highly non-linear and has a pro-poor bias, in the sense that the

estimated effect is larger for children of less educated mothers. Alderman, Hoogeveen, and Rossi

(2006) used a four round panel data set from Tanzania to estimate the determinants of a child’s

nutritional status. They found that the distance to the closest health center is not significant as
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community characteristic on child nutritional status. Galiani, Gertler, and Schargrodsky (2005)

found that in Argentina the privatization of water services improved child health. Using the

variation in ownership of water provision, they found that child mortality fell by 5 − 9% in

areas where water services are privatized. Fay, Leipziger, Wodon, and Yepes (2005) using data

from DHS by exploiting the variability in outcomes and explanatory variables observed within

countries between asset quintiles, show that better access to basic infrastructure services plays an

important role in improving child-health outcomes.1 Finally, Linnemayr and Alderman (2006),

using data from the baseline survey for a nutrition intervention program in Senegal, found that

the presence of sanitary facilities in the household improves child nutritional status.

All these studies addressed the relation between child health and its determinants with

traditional ordinary least squares (OLS) and instrumental variables (IV) approaches. Both OLS

and IV are designed to estimate the mean or average causal effect of public infrastructure on child

nutritional status. This provides the researcher with an estimate of how efficient an improvement

in access to public infrastructure is at boosting the health of the average child. The alternative

quantile regression (QR) approach goes further. It allows the researcher to estimate the marginal

effect of a given access to public infrastructure for households at different points in the conditional

height-for-age distribution. This makes it possible to assess the equity implications resulting from

changes in access to water or health facilities. In this case, the question is more precise, where

the researcher asks not what the effect of an access to infrastructure in child health is on average

but for whom such effects are significant and how large might be. To this end, the following study

applies a QR technique to the access to public infrastructure issue in order to better understand

for whom improvement in access to infrastructure counts and how large the effects are across

various points of the conditional height-for-age distribution.2 In the child health determinants

literature, we have two papers using QR techniques. Borooah (2005), uses QR regression in

order to capture the heterogeneity of child malnutrition determinants on height-for-age in India

and found that access to safe water and a good hospital improve child z−scores at the lowest end

of quantiles. Aturupane, Deolalikar, and Gunewardena (2006) analyze the determinants of child

weight and height in Sri Lanka with DHS data with quantile regression. They found that access

to piped water improves child nutritional status for nearly all quantiles. But the limitation of

these two studies is that they did not account for the endogeneity of household expenditure or

income. Although this variable is not our variable of interest in this paper, it is used as control

variable. But, the endogeneity of one covariate generally results in inconsistent estimators of all

the parameters (Wooldridge 2002). Then, without taking this into account, one can question the

robustness of their results as we know that access to those infrastructures depends on household

income. In this paper we consider this problem in a QR framework.

The rest of the article is organized as follows. Section 2 presents the model of child health.

Section 3 describes the data set used in the paper and presents descriptive statistics of some

relevant variables. Next, we outline in section 4 our econometric framework designed to analyse

the heterogeneity of the effects of public infrastructure on child nutritional status, using an

1See Ravallion (2007) and Fay, Leipziger, Wodon, and Yepes (2007) for the comments on this paper
2Low height-for-age index identifies past undernutrition or chronic malnutrition. It cannot measure short term

changes in malnutrition. For children below 2 years of age, the term is length-for-age; above 2 years of age, the
index is referred to as height-for-age. Deficits in length-for-age or height-for-age is referred to as stunting
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instrumental variables quantile regression. This is followed by a discussion of the results in

section 5 and concluding remarks in section 6.

2 Basic Model of Child Health

Malnutrition has strong negative effects on children’s health. Nearly one-third of children in

developing countries are either underweight or stunted, and more than 30 % of the developing

world’s population suffers from micronutrient deficiencies (World-Bank 2006). In this paper,

child nutritional status is quantified using one most commonly used anthropometric indicator:

height-for-age.3 This indicator is expressed as a z−score, which compares a child’s measurements

with the measurements of a similar child in the reference population, from healthy population,

which has a z−score with mean zero and standard deviation one.4 The height-for-age is an

indicator of long-run health and welfare and it is not subject to transitory shocks (Waterlow

et al. (1977) , WHO (1986), Barrera (1990)). The determinants of child health have been

extensively studied in the economic literature. Based on these studies, several researches have

explored interventions needed to address the causes of malnutrition. According to Strauss and

Thomas (1995), interventions could focus on helping households to use their resources more

effectively in order to improve the nutritional status of their children. The analysis in this paper

is conceptually built on a model widely used in the literature on the demand for child wellbeing.

The application of this theoretical framework children’s health status is well known, and is

discussed in detail in Behrman and Dealalikar (1988) and Strauss and Thomas (1998). This

analysis is based on a well known model in the tradition of Becker (1981), in which a household

maximizes a utility function. In this case, a household may be assumed to choose child health

H, leisure L, consumption of goods and services C. The problem is:

max
H,L,C

U = U (H,L,C;Xh, µ) (1)

where Xh is a vector of household characteristics including the education level of the household

head and his spouse, and µ unobserved heterogeneity of preferences (as described by Pitt and

Rosenzweig (1985)). The household maximizes this utility function subject to two constraints:

a health production function for nutritional status and a budget constraint. Child health is

generated by the following production function5

Hi = F (Yi,Xi,Xh,Xc, ψi) (2)

where Yi is a vector of health inputs which are nutrient intake, health care practices, time spent

by parents taking care of children, and disease incidence, Xi, is a vector of child characteristics

which are age and gender, Xc is a vector of community characteristics that may have a direct

3Anthropometrics indicator is an output in a health production function. There is another nutrition indicator,
nutrient intakes, which takes account the inputs aspect (see Strauss and Thomas (1998) for more description).

4The reference population is the standard WHO-adopted definition which is based on anthropometric mea-
surements of US population surveys.

5There are two types of health production function used in the literature: the mortality production function
and the morbidity/anthropometric production function (Behrman and Dealalikar (1988)). Here we use the
anthropometric production function
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impact on child health, which are the accessibility and quality of health services and safe water,

and ψi are unobservable individual health endowments. In addition, the full income constraint

takes the form:

I = PcC +WL+ PY Y (3)

where Pc and W , PY are the price vectors of consumption goods, leisure and health inputs

respectively, and I is the full income including the value of the time endowment of the household

and non-labor income. In this framework, the reduced form function for child health is:

Hi = Φ (Xi,Xh,Xc, I, Pc, PY , ηi) (4)

where the particular functional form of the function Φ () depends on the underlying functions

characterizing household preferences and the health production function, and ηi represents un-

observed heterogeneity in health outcomes.

3 Data and Descriptive Statistics

The data for the empirical analysis are drawn from the 2001 national representative household

survey in Senegal (Enquête Sénégalaise Auprès des Ménages, ESAM2 ) conducted by the Sene-

galese department of statistics and forecasting (Direction de la Prévision et de la Statistique,

DPS ). The survey is based on multi-stage stratified sampling design of nearly 6, 600 households,

however our analysis used 2, 868 households and 4, 484 children under 5 years of age for whom we

have anthropometric data. The average age of children is 25 months (Table 1). In this paper, we

use as child nutritional status indicator, the height-for-age z-scores (HAZ) which represents the

long term nutrition deprivation (Trapp and Menken 2005).6 More specifically the variable HAZ

is the difference (expressed in standard deviations) of a child’s height for age from the median

height of children of the same age and sex in the reference population. The standard reference

population recommended by the World Health Organization is that of the U.S National Center

for Health Statistics. Other malnutrition anthropometric measures include weight-for-height

and weight-for-age z-score. The former is also a measure of long-term nutritional status as the

height-for-age but is influenced by recent phenomena (Trapp and Menken 2005). In contrast, a

commonly used measure for clinical assessment, weight-for-age, is more indicative of short term

conditions; as most regressor in cross sectional studies are stock rather than flow variables it is

generally not practical to study this variable with such data (Alderman 2000) .

Our main variables are the child nutritional indicator, i.e height-for-age z-score and the

infrastructure variables, i.e the health and water conditions for the household in the community.

We aim to measure the child-nutritional effects of access to health and safe water facilities.

6When working with z-scores, it is important to consider the issue of cut-offs points, i.e. which observations to
exclude from the analysis that stem from wrong measurements or erroneous data entry, as outliers can influence
the estimation results in a non-trivial way. The World Health Organization (WHO) has defined two different
types of limits for acceptable data: on the one hand, it suggests a flexible exclusion range, defined as +/- 5
z-score units from the observed mean z-score, but with a maximum height-for-age z-score of +3.0. The other
recommended filter is a fixed restriction range for observations with a mean z-score of higher than -1.5, and
bounded by a lower value of -5.0 for both weight-for-age and height-for-age, and an upper bound of +3.0 for
height-forage, and 5.0 for weight-for-age. In this paper, we used the WHO proposition.
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As the data does not indicate actual demand of these facilities, the analysis is limited to the

presence of the facilities rather than their utilisation. However, according to Strauss (1990) the

availability is more interesting than the actual take-up of community services as the latter reflects

household choice and would then have to be treated as an endogenous variable. These facilities

variables are binary indicating (= 1) whether the household reports that time to access to these

facilities is less than 15mn, and zero otherwise. We also control for all classical determinants

of child health: child and household characteristics, including mother’s education, household

income, child age, child sex, household size, etc.

The anthropometric results for children reveal better average performance for girls than for

boys (Table 1), a fact that has often been noted in Subsaharan Africa over the past 40 years

by Svedberg (1990). There is significant heterogeneity when one breaks down the average by

quantile (τ = 0.10, 0.25, 0.50, 0.75, 0.90), with a tendency for the mean z−score to be worse at

the low end of the distribution. The proportion of households with safe water is 85%, and this

varies little between rural and urban areas (Table 1). Access to health facilities in Senegal is very

low, only 35% of households in ESAM2 have access to this type of infrastructure. The proportion

in rural areas is 27% which means that the lack of health facilities is an important problem in

this country. Table 2 shows the relationship between some households, child characteristics and

child malnutrition prevalence. We observe that among households with access to safe water, the

prevalence of stunting is 30.6% and 36.3% at the national and rural levels respectively.7 For

health facilities, the percentage of stunting is low than the former. Only 25.8% of children are

stunting in the family with access to health facilities according to ESAM2. However, in rural

areas we have 30.3% of stunting.

A preliminary look at the relationship between access to infrastructure and child anthro-

pometric z− score across the five quantile to be estimated (the 10th, 25th, 50th, 75th and 90th

percentiles) is provided in Table 3. At the national level, households with access to safe wa-

ter don’t perform better in means of z−score than those without access in full sample and all

quantiles. However, we observe a statistically significant difference in means for access to health

facilities only in the full sample for the users. For all quantiles, the differences are not distin-

guishable from zero. In rural areas, we have the same observation. Clearly, there seems to be no

consistent pattern that emerges with respect to child anthropometrics and access to infrastruc-

ture. However, one must be wary drawing conclusions from such statistical analysis. A more

in-depth analysis that controls for several observable characteristics is necessary to properly as-

certain whether there is a significant effect of access to safe water and health facilities on child

nutritional status and whether any such effect is heterogeneous across the z−score distribution.

4 Estimation Strategy

What the regression curve does is give a grand summary for the averages of the

distributions corresponding to the set of x′s. We could go further and compute sev-

eral different regression curves corresponding to the various percentage points of the

7A child is considered stunted when his or her height-for-age is more than two standard deviations below the
NCHS/WHA reference. However, a child is said to be severely malnourished when the relevant nutritional status
indicator is more than three standard deviations below the NCHS/WHO reference.
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distributions and thus get a more complete picture of the set. Ordinarily this is not

done, and so regression often gives a rather incomplete picture. Just as the mean

gives an incomplete picture of a single distribution, so the regression curve gives a

correspondingly incomplete picture for a set of distributions.

Frederick Mosteller and John W. Tukey (1977)

Without loss of generality, an estimation of equation (4) can be written as:

Hi = α+Xiβ +Xhδ +Xcθ + εi (5)

where Hi is a vector of anthropometric measures of the children under consideration,Xi, Xh,

and Xc are vectors of covariates at the individual, household, and community level, respectively,

and εi is an error term.

In the present paper child nutritional status will be estimated using the quantile regression

methodology. The quantile regression estimates will then be compared to the OLS regression

estimates and inference drawn.

4.1 Estimation of the Quantile Regression model

4.1.1 Quantile function

OLS approach is based on the mean of conditional distribution of the dependent variable,

roughly, base some policy recommendations according to this mean slope would implicitly as-

sume that possible differences in terms of the impact of the exogenous variables along the

conditional distribution, are unimportant. Yet, if exogenous variables influence the parameters

of the conditional distribution of the dependent variable differently, then an analysis that ignores

this possibility will be severely weakened (Koenker and Bassett 1978).Unlike OLS, quantile re-

gression models allow for a full characterization of the conditional distribution of the dependent

variable. The quantile regression (QR) estimator, introduced by Koenker and Bassett (1978), is

an increasingly important empirical tool, allowing researchers to fit parsimonious models to an

entire conditional distribution. Before presenting a formal definition of quantile regression we

want to highlight the notion of quantile function and give the definition of a sample quantile.

Thus, the word "quantile" is a synonym for percentile or fractiles and refers to the general case

of dividing the population into fours (or more) segments, a quintile divides the reference popu-

lation into five sub-groups and a decile divide the population into ten sub-groups. The median

divides the population into two groups. Indeed, in a sense, quantiles are related to the process

of ordering and sorting the data. Assume that the τ th quantile of a population is mτ where

0 < τ < 1 and FY is the cumulative distribution function (cdf), in population, of y then mτ is

defined as:

τ = P (y ≤ mτ ) = FY (mτ ) (6)

Then for a sample the quantile function mτ is straightforward defined as:

mτ = F−1
Y (τ) = inf{y|FY (y) ≥ τ} (7)
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The quantile mτ should be considered through the value of y below which τ of the values fall.

Then for any τ in the interval (0, 1), mτ provides the τ th quantile of Y . Similarly, taking a

random sample Y1, . . . , Yn with empirical distribution function F̂Y (τ) = #(Yi≤τ)
n

, we can also

define the empirical quantile function as:

m̂τ = F̂−1
Y (τ) = inf

{
y|

# (Yi ≤ τ)

n
≥ τ

}
(8)

It can easily be seen from equation (8) that in order to obtain the desired quantile, one first

has to sort and rank the observed sample and then check at which observation the threshold is

reached. The most frequently examined are the median (τ = 0.5), the 25th and 75th percentiles.

4.1.2 Quantile regression

The idea of quantile regression was first introduced by Koenker and Bassett (1978). This method

of estimation if the generalization of the concept of ordinary quantiles in a location model. In

their seminal paper, Koenker and Bassett (1978) show that the empirical quantile function

(equation 8) is the solution of the minimization problem defined by:

m̂τ = argmin
b

{
∑

i:y≥b

τ |Yi − b| +
∑

i:y<b

(1 − τ) |Yi − b|

}

= argmin
b

∑

i

ρτ (Yi − b) (9)

with ρτ (z) expressed as:

ρτ (z) =





τ (z) if z ≥ 0

(τ − 1) z if z < 0
= (τ − I (z < 0)) z (10)

ρτ (z) is the check function and I(.) is the usual indicator function. Let xi, with i, . . . , n a

sample, a K × 1 vectors of regressors. Following Koenker and Bassett (1978) we can write a

linear quantile regression as follows:

yi = x′iβτ + ετi
(11)

where the distribution of the error term ετi
is left unspecified and the τ th quantile of the error

term conditional upon the regressors is zero:

mτ (ετi
|xi) = 0

From equations (11) and (12) it follows that the τ th conditional quantile of yi can be written as:

mτ (yi|xi) = x′iβτ (12)
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In analogy of equation (9) we finally obtain the quantile regression by solving with respect to

βτ .

β̂τ = argmin
βτ∈RK

{
∑

i:yi≥x′

i
βτ

τ |yi − x′iβτ | +
∑

i:yi<x′

i
βτ

(1 − τ) |yi − x′iβτ |

}
(13)

= argmin
βτ∈RK

∑

i

ρτ

(
yi − x′iβτ

)
(14)

According to equation (13) it’s a plain that all observations above the estimated hyperplane

given Xβ̂τ are weighted with τ , all observations below the estimated hyperplane are weighted

with (1 − τ). Indeed, the quantiles other than the median are defined as the solution of a

problem that minimizes the weighted sum of the absolute value of the residuals. We can also

notice that for quantiles above the median, say τ = 0.75, a higher weight is placed on residuals

above the quantile than on residuals below the quantile. This pushes the minimization up above

the median, which is where one wants it in such cases. The Least absolute deviation (LAD)

estimator of β is a special case of quantile regression. The LAD is obtained by setting τ = 0.50

(median regression):

β̂0.5 = argmin
β0.5∈RK

∑

i

|yi − x′iβ0.5| (15)

In contrast to the OLS approach, the quantile regression procedure is less sensitive to outliers

and provides a more robust estimator in the face of departures from normality (Koenker (2005),

Koenker and Bassett (1978)). Quantile regression models may also have better properties than

OLS in the presence of heteroscedasticity (Deaton (1997)). Because the objective function is not

differentiable, standard gradient optimization methods cannot be used. However, the problem

can be written in the form of a linear programming problem, and solved using linear programming

methods as in Koenker and Bassett (1978). Generalized Method of Moments (GMM) estimation

of the quantile is also possible, as shown in ?

Two general approaches exist for the estimation of the covariance matrix of the regression

parameter vector. The first derives the asymptotic standard error of the estimator (Koenker

and Bassett (1978)) while the second uses bootstrap methods to compute these standard errors

and construct confidence intervals. In this paper, we use the design matrix bootstrap method

to obtain estimates of the standard errors for the coefficients in quantile regression (Buchinsky,

1995, ?). Based on a Monte Carlo study, Buchinsky (1995) recommends the use of this method

as it performs well for relatively small samples and it is robust to changes of the bootstrap sample

size relative to the data sample size. More importantly, the design matrix bootstrap method is

valid under many forms of heterogeneity. This method of bootstrap performs well even when

the errors are homoscedastic. In addition to the design matrix bootstrap method, we use the

percentile method (see (?) for more detail on this method) recommended by Koenker and Hallock

(2001). This method enables to construct confidence intervals for each parameter in βτ , where

the intervals are computed from the empirical distribution of the sample of the bootstrapped

β̂BS
τ ’s. Conceptually, in the design matrix bootstrap, we consider the sample of n observations as

if it is were the population of interest. Specifically, let (yBS
i , x

′BS
i ), i = 1, . . . n, be the bootstrap

sample obtained by sampling with replacement from the original sample (yi, x
′
i). Applying
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the simplex algorithm to this sample gives β̂BS
τ , a bootstrap estimate of βBS

τ . Repeating this

process R times yields bootstrap estimates β̂BS
τ1 , β̂

BS
τ2 , . . . , β̂

BS
τR . The bootstrap estimate of the

asymptotic variance-covariance matrix of βτ is then obtained as follows:

Ω̂BS
τ =

n

R

R∑

j=1

(
β̂BS

τj − β̂τ

)(
β̂BS

τj − β̂τ

)′

(16)

where

β̂ =
1

R

B∑

j=1

β̂
BS

τ (17)

The number of bootstrap replication, R, should be large enough to guarantee a small sample

variability of the covariance matrix. In this paper we use 500 bootstrap replications to obtain

the standard errors.8

4.2 Instrumental Variable Quantile Regression Estimation

The problem of endogeneity occurs because household per capita income and child health are

likely to be jointly determined because time spent in market work for income may subtract from

time spent caring for children (Thomas and Strauss 1992). Obviously, household make decisions

about their children’s health at the same time that they make decisions about income earning

activities, therefore these two decisions could be related. Another problem with household

income is that it is often measured with random error, simply because it is difficult for households

to report accurately their incomes. As in Glewwe, Koch, and Nguyen (2002), household per

capita will be used instead of household per capita income to measure I, for two reasons.

First, expenditure data are likely to be more accurate than income data in developing countries

(Deaton 1997). Second, expenditure data are more likely to reflect a household "permanent

income", which is more appropriate because I represents household’s income since the child was

born, not just current income. However, expenditures per capita is not our variable of interest,

but without taking account this endogeneity problem, all coefficients in the model could be bias

(Wooldridge 2002). Suppose that, in equation 5 we have two variables, expenditures per capita

X and access to infrastructure I. Thus, equation 5 becomes:

Hi = α+Xiλ+ Iiϕ+ υi (18)

However, expenditure per capita is endogenous (Cov (Xi, υi) 6= 0) and correlated with infrastruc-

ture variable: E (Xi|Ii) = π0 + Iiπ1. In this case, the OLS estimates of Ii will be biased by:

E (Hi|Ii) = α+E (Xi|Ii)λ+ Iiϕ

= α+ (π0 + Iiπ1)λ+ Iiϕ

= α+ π0λ+ Ii (ϕ+ π1λ) (19)

8The problem of choosing the number of bootstrap repetitions has been studied in the literature. See Andrews
and Buchinsky (2000) and Davidson and MacKinnon (2001). The problem is that one can obtain "different
answers" from the same data merely by using different replications if B is too small, but computational costs can
be great if B is chosen to be extremely large.
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where π0λ and π1λ are measures of the OLS bias. The bias will increase as λ and the

correlation between X and I increase in absolute value.

As in the OLS, when some of the explanatory variables are determined simultaneously with

the response variable, a bias arises in quantile regression estimators due to the dependence be-

tween the regressors and the error term. Then, instrumental variable methods can, remove this

bias caused by either endogeneity or measurement in the household expenditure variable. How-

ever, the difficulty with this method is to find plausible instrumental variables, that is variables

that are correlated with household income but uncorrelated with unobserved determinants of

child health and uncorrelated with the measurement error in the household expenditure variable.

The issue of endogenous regressors is not straightforward in the quantile regression framework

and few empirical papers to date have taken this problem into account in quantile regression.9

Following Amemiya (1982) and Powell (1983) the 2SRQ procedure is essentially the quantile

estimator analog of 2SLS. Then, suppose we are given the simple model with two endogenous

variables defined as:

Y = X1β +X2γ + ε (20)

X2 = X1δ + Zϕ+ ρ (21)

where Y is the response variable; X1 is a matrix of exogenous regressors; X2 is a matrix of

endogenous variables determined simultaneously with Y ; Z is a matrix of valid instrumental

variables; and ε and ρ are random errors terms. The two steps are (Amemiya 1982): the first

stage concerns equation 21 where it consists to regress by OLS the endogenous X2 variable

on the exogenous variable (including the instruments), and the second stage is to estimate by

quantile regression the structural Equation 20 where the endogenous variable X2 is replaced by

its predicted values from the first stage, X̂2
10. However, the standard errors might be biased.

Then, the entire system is estimated with bootstrap techniques, that is, not only the second

step in order to account for biased standard errors due to the fact that one of the regressors is

estimated in the first stage (Amemiya (1982), Arias, Hallock, and Sosa-Escudero (2001), Maitra

and Vahid (2006)).

9Ribeiro (2001) analyzing the labor supply behavior of urban males in Brazil, investigates the possible en-
dogeneity of wages and income with respect to hours worked in a quantile regression framework by employing
a two-stage least absolute deviation estimator (2SLAD) originally developed by Amemiya (1982), and Powell
(1983) has investigated its asymptotic normal. Levin (2001) used quantile regression to estimate the impact
of class size and peer effects on scholastic achievements of Dutch students. An instrumental variables quantile
regression (tow-stage quantile regression) has been used to account for the potential endogeneity of class size as a
policy variable. They find that the class size in general does not have an effect on scholastic achievement whereas
the peer effect proves significantly positive in the lower part of the distribution. Also, Arias, Hallock, and Sosa-
Escudero (2001) estimated the returns to schooling with instrumental variables quantile regression using data on
earnings of identical twins. They tested for individual heterogeneity and found that more able individuals obtain
higher marginal benefits of schooling. The subject on the instrumental variable quantile regression estimator has
also been investigated by Abadie, Angrist, and Imbens (2002) who develop a quantile treatment effects estimator
(QTE) to account for endogeneity of the fertility decision in the estimation of the effect of subsidized training on
the quantiles of the distribution of trainee earnings. Recently, a quantile regression with endogenous regressors
has also been investigated by Chernozhukov and Hansen (2005) who develop a model of quantile treatment effects
in presence of discrete endogenous regressors.

10Chen (1988), Chen and Portnoy (1996) provide method for correcting covariance matrix for a given quantile
by 2SRQ
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5 Estimation Results

Our main results are instrumental variables estimations. But, we will present the results with

OLS for comparison. As we mention before, household expenditure is instrumented with an

asset index and land ownership (Linnemayr and Alderman (2006), Christiaensen and Alderman

(2004)). 11

For all quantile estimations, in order to check whether the results obtained in the present

study are sensitive to the survey design, a bootstrap approach proposed by Deaton (1997) is em-

ployed. Deaton’s approach implies bootstrapping the clusters rather than the children.12 Also,

as Deaton (1997) points out, treating a two-stage sample as if it was a simple random sample

can have serious implications since the sampling variability of the estimates can be affected

by the design. It is often the case that clustering increases the inter-cluster variability since

households within clusters are frequently similar to one another in their relevant characteristics.

Therefore, ignoring the cluster design can lead to standard errors that are too small and t-values

that are two large, thereby overstating the precision of the estimates (Moulton (1986), Moulton

(1990), Bertrand, Duflo, and Mullainathan (2004)). Therefore, we use clustering for correcting

this problem in all our estimations as in quantile regressions.

Our IV results depend on instrument relevance as emphasized by the recent literature on

weak instruments (Staiger and Stock (1997), Stock, Wright, and Yogo (2002), Stock and Yogo

(2002); Moreira (2003), Andrews and Stock (2005); Andrews, Moreira, and Stock (2007)).13 If

the instrumental variables are only weakly correlated with the endogenous explanatory variables,

conventional asymptotic theory no longer holds, and statements about statistical significance

and inference may lead to the wrong conclusions. Then, the relevance of the instrumental

variables has to be checked to allow for statements about statistical significance. The first-

stage regressions (Table 7) supply valuable information about the relevance of the instrumental

variables. The F -statistics of the first-stage regressions and the usual partial R2 in Table 7 point

to strong instruments at national and rural level. In addition to these test results, a statistic

proposed by Cragg and Donald (1993) is computed, which represents the relevance of the weakest

instruments. The Cragg-Donald statistic critical value for one endogenous and two instruments is

19.93. Our statistics equal 414.11 and 46.36 for national and rural level respectively, then all our

IV results are not affected by weak-instrument problems. We also present in Table 8 and 9 the

Hansen test for overidentification restrictions and Hahn and Hausman (2002) an another weak

instrument test. The Hansen test does not reject the one overidentifying restriction. Our last

weak instrument test of Hahn and Hausman (2002), which can be applied only for overidentified

equations, does not reject the null hypothesis of strong instruments.

First, IV estimates in column 1 of Table 8, 9 indicate that access to safe water has a positif

effect on child z−score in the full sample (0.023), but with a standard error that renders this

11Assets index are constructed using Principal Components Analysis
12A list of the n sample clusters is made, a bootstrap sample of size n is drawn with replacement, and the

individual cluster-level data merged in. As the data used in the present study has been collected using a two-stage
stratified cluster sampling procedure. This two-stage design, in which primary sampling units or clusters (often
villages) are drawn first and then households from within each cluster, is very common for household surveys in
developing countries. See Deaton (1997) for more details in clustering sample

13See Nichols (2006) for an interesting theoretical and technical survey.
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effect statistically indistinguishable from zero (s.e = 0.085) (Table 8). When we switch to rural

areas (Table 9), result remains the same, the estimates of access to safe water is positive , 0.030,

but the coefficient is still not significant. We have the same results with OLS estimations (see

Table 4, 5). At this stage, we can say that, with an IV result, this type of infrastructure has an

effect on child anthropometric but it is not different from zero.

However, the quantile regression paints a different picture for this type of infrastructure. At

the lower quantile, i.e. the 10th percentiles, access to safe water improves significantly child

nutritional status by 0.272 (s.e = 0.120) for the full sample (Table 8). Compare to the others

quantiles, its effect is important for the 10th. In Table 4, the OLS results also give the same

effect on average. The coefficient of access to safe water in rural areas is also positive (0.329)

and significant (s.e = 0.143) for IVQR (Table 9). Contrary to OLS, quantile estimation shows

that, access to safe water is very important for child nutritional status in the lowest quantile of

the distribution. The results of our estimations show that at the national level, using OLS , we

can not distinguish the contribution of safe water on height-for-age. But, this is not the case

when quantile strategy is applied. We note that access to safe water in household communities

improve child health for those whose z−scores are very bad, i.e the 10th quantile.

For health facilities, in the full sample, the coefficient is positive but not significant on

child z−score as for access to safe water (column 1 in Table 8). Meanwhile, in rural areas we

observe a strong positive significant effect (column 1 in Table 9), showing that access to health

infrastructure is an important problem in this part of the country. The IVQR results show

important differences in the effect of health infrastructure at different points in the conditional

distribution of height-for-age. We observe in the full sample that, contrary to the OLS average

results, at the low end of the distribution, i.e τ = 25% and 50%, the coefficient of access

to health facilities is positive and significant (Table 8). This means that OLS estimates can

mask the heterogeneity of the potential contribution of access to health infrastructure on child

nutritional status in the full sample. Child anthropometric is affected positively with an access

to health facilities for nearly all quantiles except τ = 0.90 (Table 9), and the level of coefficients

is decreasing from the lowest quantiles to the higher in rural areas. In other words, the effect of

this type of infrastructure is important for undernourished children who were most in need of

help. Health facilities remain the infrastructure which has the most an important positive and

significant effect on child z−score.

An inspection of the quantile estimate in Figure 1 and 2 reveals that the slopes coefficients

estimated at different quantiles are not flat but follow nonlinear patterns, which suggests, at

least at an informal level, the existence of parameter heterogeneity across quantiles. Formally,

accordingly to ? the parameter heterogeneity can be examined by the test whether the quantiles

are statistically different from each other. This differentiation across quantiles is important for

the analysis and the formulation of policies that may alter child nutritional status pattern. The

null hypothesis that the coefficient vectors are the same for the different quantiles equation is

rejected, both in pair-wise comparisons and jointly (Table 6, 10). The tests confirm the visual

impression from Figure 1 and 2.
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6 Concluding Remarks and Policy Implication

This paper investigates the effect of access to public infrastructure, i.e. safe water and health

facilities on child nutritional status in Senegal. In this country, access to water and health is

highly limited and very low in rural areas where most of people are poor.14 Then, the main results

of this work is that improving the access to safe water and health facilities have a positif and

significant effect on household welfare, more precisely on child nutritional status in rural areas.

However, we find that "classical" conditional mean regression, i.e. OLS, has been insufficient to

show this effect of the access to public infrastructure on child height-for-age. In addition, there

is much heterogeneity in the marginal effect of such infrastructure on child height-for-age which

is not highlighted by OLS estimations. Thus our work shows that OLS does not give a complete

picture of the effect of safe water and health facilities on child health.

By using a quantile regression, we show that these public infrastructures are very important

for the poorest household in rural areas. In general, quantile regression might be used more often

as a complement, not a substitute, to traditional regression analysis since we can use what is

known about the distributions in a more complete way than giving an average summary. Policy

interventions to address child malnutrition need to be sensitive to this reality.
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Table 1: Summary Statistics

National Rural
Mean SD Mean SD

Child characteristics

Height-for-age z−score −1.24 1.66 −1.41 1.71
male −1.34 1.66 −1.52 1.70
female −1.13 1.66 −1.28 1.71

Age (months) 25.57 14.97 25.62 15.05
Sex ( 1 = female) 0.47 0.49 0.47 0.49

Household characteristics

Household size 13.04 6.14 13.79 6.10
Mother’s age (years) 28.71 6.98 28.18 6.95
Expenditures per capita 178, 001 215, 552 119, 796 98, 809
Mother literate 0.23 0.42 0.12 0.32
Head polygamous 0.35 0.47 0.41 0.49

Ethnic group of head:

Wolof 0.43 0.49 0.42 0.49
Pular 0.27 0.44 0.32 0.46
Serer 0.13 0.34 0.14 0.34
Diola 0.02 0.16 0.01 0.10
Other 0.12 0.32 0.09 0.29

Village characteristics

Access to water 0.85 0.35 0.82 0.37
Access to health services 0.35 0.47 0.27 0.44
Access to Toilet = septic tank 0.03 0.19 0.001 0.04
Access to Toilet = flush with septic pit 0.21 0.41 0.05 0.22
Access to Toilet = water sealed 0.01 0.13 0.007 0.08
Access to Toilet = latrine 0.51 0.49 0.63 0.48

Quantiles of Height-of-age
10% quantile −4.08 0.43 −4.07 0.43
25% quantile −3.32 0.74 −3.34 0.74
50% quantile −1.69 0.27 −1.69 0.27
75% quantile −0.70 0.32 −0.69 0.32
90% quantile 0.59 0.22 0.58 0.20

# of Observations 4, 484 2, 612
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Table 2: Prevalence of Child Malnutrition, Moderate stunting height-for-age z−score ≤ -2, Severe stunting height-for-age z−score ≤ -3

National Rural
Moderate Severe Moderate Severe

Sex of child
male 32.72 18.67 38.57 23.28
female 28.65 17.47 33.18 19.93

Children whose mothers were
literate 22.55 13.37 30.24 19.61
in polygamy 33.49 19.42 37.20 21.05

Children living in village with
Access to water 30.60 18.35 36.31 22.15
Access to health services 25.87 15.92 30.31 20.86

Region:
Dakar 23.84 11.43 14.00 09.33
Ziguinchor 38.97 16.31 23.84 22.24
Diourbel 50.99 22.41 52.76 23.70
St Louis 16.51 14.60 17.50 17.00
Tamba 31.51 24.01 34.47 24.69
Kaolack 28.83 23.66 30.45 27.47
Thiès 36.40 18.87 60.13 24.67
Louga 25.42 17.58 23.09 14.72
Fatick 34.69 20.22 40.59 23.71
Kolda 44.35 17.79 45.55 17.37

Total 30.77 18.10 36.00 21.68
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Table 3: Test of Equality of Distribution of Height for-age z-score

National
Water Health

H0 : no H0 : equality H0 : no H0 : equality

Mean difference of distributions Mean difference of distributions

(sd) in means Kolmogorov Bartlett (sd) in means Kolmogorov Bartlett

Yes No [p−value] [p−value] [p−value] Yes No [p−value] [p−value] [p−value]

Full −1.179
(1.632)

−1.238
(1.709)

−0.059
[0.397]

0.035
[0.443]

2.586
[0.108]

−1.058
(1.593)

−1.262
(1.669)

−0.203
[0.000]

0.065
[0.000]

4.481
[0.034]

Q10 −4.071
(0.424)

−4.105
(0.491)

−0.033
[0.532]

0.126
[0.198]

2.949
[0.086]

−4.066
(0.447)

−4.082
(0.433)

−0.015
[0.728]

0.083
[0.492]

0.179
[0.672]

Q25 −3.284
(0.743)

−3.360
(0.762)

−0.076
[0.199]

0.071
[0.363]

0.197
[0.657]

−3.246
(0.727)

−3.320
(0.755)

−0.074
[0.122]

0.072
[0.133]

0.670
[0.413]

Q50 −1.683
(0.269)

−1.685
(0.263)

−0.001
[0.950]

0.054
[0.748]

0.146
[0.702]

−1.674
(0.268)

−1.689
(0.268)

−0.014
[0.369]

0.049
[0.502]

0.000
[0.995]

Q75 −0.699
(0.328)

−0.705
(0.319)

−0.005
[0.843]

0.043
[0.939]

0.222
[0.637]

−0.686
(0.327)

−0.709
(0.326)

−0.022
[0.261]

0.051
[0.458]

0.003
[0.955]

Q90 0.600
(0.223)

0.590
(0.212)

−0.010
[0.725]

0.064
[0.961]

0.265
[0.606]

0.591
(0.219)

0.604
(0.223)

0.013
[0.530]

0.050
[0.930]

0.104
[0.747]

Rural
Full −1.362

(1.669)
−1.323

(1.776)
0.039
[0.649]

0.047
[0.309]

3.143
[0.076]

−1.174
(1.645)

−1.419
(1.701)

−0.245
[0.000]

0.092
[0.000]

1.108
[0.292]

Q10 −4.076
(.426)

−4.051
(0.476)

0.024
[0.670]

0.102
[0.526]

1.414
[0.234]

−4.075
(0.474)

−4.069
(0.428)

0.005
[0.919]

0.085
[0.769]

1.196
[0.274]

Q25 −3.322
(0.750)

−3.378
(0.749)

−0.056
[0.398]

0.061
[0.706]

0.000
[0.985]

−3.259
(0.751)

−3.355
(0.748)

−0.096
[0.129]

0.086
[0.219]

0.004
[0.949]

Q50 −1.681
(0.267)

−1.686
(0.264)

−0.004
[0.874]

0.060
[0.878]

0.022
[0.880]

−1.668
(0.255)

−1.686
(0.270)

−0.018
[0.462]

0.075
[0.486]

0.792
[0.373]

Q75 −0.697
(0.324)

−0.677
(0.325)

0.019
[0.564]

0.081
[0.540]

0.000
[0.976]

−0.681
(0.322)

−0.698
(0.326)

−0.017
[0.556]

0.055
[0.808]

0.024
[0.875]

Q90 0.587
(0.205)

0.610
(0.204)

0.023
[0.481]

0.108
[0.705]

0.002
[0.964]

0.587
(0.188)

0.594
(0.213)

0.007
[0.811]

0.104
[0.590]

1.501
[0.220]

Note: Testing the null that the distributions of the response variables are identical between children in household with access and those without
access to public infrastructure. Tests of the equality of means, Bartlett and Kolmogorov-Smirnov tests of the equality of the distributions.
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Table 4: OLS and quantile regression of child height-for-age z-score, national

OLS National: Quantile regressions
Dep.var: 10% 25% 50% 75% 90%
child height-for-age z-score (1) (2) (3) (4) (5) (6)

Access to water 0.022
(0.084)

0.215
(0.119)

0.143
(0.085)

−0.057
(0.067)

−0.032
(0.088)

−0.119
(0.093)

Access to health services 0.081
(0.068)

0.105
(0.098)

0.133
(0.070)

0.107
(0.053)

0.043
(0.062)

−0.027
(0.068)

Included control variables:
Child characteristics Yes Yes Yes Yes Yes Yes
Household characteristics Yes Yes Yes Yes Yes Yes
Village characteristics Yes Yes Yes Yes Yes Yes

# of Observations 4484 4484 4484 4484 4484 4484
R2/Pseudo R2 0.14 0.08 0.07 0.07 0.10 0.14

Note: OLS, standard errors clustered at the district level in parentheses. For quantile regression, boot-
strapped standard errors clustered at the district level in parentheses obtained with 500 replications

Table 5: OLS and quantile regression of child height-for-age z-score, rural

OLS Rural Quantile regressions
Dep.var: 10% 25% 50% 75% 90%
child height-for-age z-score (1) (2) (3) (4) (5) (6)

Access to water 0.028
(0.105)

0.351
(0.149)

0.150
(0.133)

−0.024
(0.088)

0.030
(0.112)

−0.096
(0.127)

Access to health services 0.189
(0.083)

0.211
(0.108)

0.225
(0.102)

0.184
(0.085)

0.224
(0.107)

0.139
(0.112)

Included control variables:
Child characteristics Yes Yes Yes Yes Yes Yes
Household characteristics Yes Yes Yes Yes Yes Yes
Village characteristics Yes Yes Yes Yes Yes Yes

# of Observations 2612 2612 2612 2612 2612 2612
R2/Pseudo R2 0.19 0.11 0.12 0.11 0.13 0.16

Note: OLS, standard errors clustered at the district level in parentheses. For quantile regression, boot-
strapped standard errors clustered at the district level in parentheses obtained with 500 replications
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Table 6: Quantile regression: Test of equality of coefficients between quantile, National/Rural

Quantile regressions
National Rural

F(27, 4456) p−value F(27, 2582) p−value
Null hypothesis
Q10 = Q25 0.92 0.57 0.80 0.76
Q10 = Q50 2.57 0.00 1.34 0.11
Q10 = Q75 5.83 0.00 3.41 0.00
Q10 = Q90 12.95 0.00 8.79 0.00
Q25 = Q50 4.21 0.00 2.40 0.00
Q25 = Q75 7.26 0.00 5.77 0.00
Q25 = Q90 19.68 0.00 11.61 0.00
Q50 = Q75 5.34 0.00 3.39 0.00
Q50 = Q90 15.48 0.00 9.16 0.00
Q75 = Q90 6.25 0.00 3.86 0.00

Joint test of equality of all F(108, 4454) F(108, 2584)
slopes coefficients 7.51 0.00 5.36 0.00

Table 7: First stage estimates

Dep.var: child height-for-age z-score
National Rural

Exclude Instruments

Asset Index 0.135
(0.009)

0.085
(0.016)

Land ownership −0.167
(0.029)

−0.089
(0.039)

Joint significance test

of child characteristics 0.65
[0.582]

0.01
[0.000]

household characteristics 57.60
[0.000]

27.75
[0.000]

village characteristics 11.03
[0.000]

4.48
[0.000]

Weak-instrument test
Partial R2 0.15 0.03
Partial F 129.90 16.08
Cragg-Donald 414.11 46.36
Critical value 19.93 19.93
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Table 8: IV and IVQR estimations, National

IV National: IV Quantile regressions
Dep.var: 10% 25% 50% 75% 90%
child height-for-age z-score (1) (2) (3) (4) (5) (6)

Access to water 0.023
(0.085)

0.272
(0.120)

0.130
(0.103)

−0.043
(0.069)

−0.050
(0.091)

−0.105
(0.096)

Access to health services 0.076
(0.067)

0.102
(0.096)

0.146
(0.069)

0.103
(0.058)

0.037
(0.064)

−0.030
(0.069)

Included control variables:
Child characteristics Yes Yes Yes Yes Yes Yes
Household characteristics Yes Yes Yes Yes Yes Yes
Village characteristics Yes Yes Yes Yes Yes Yes

Test of the OID restrict.
[p−value]

1.444
[0.229]

Hahn-Hausman IV validity test

m3 test statistic
[p−value]

−0.505
[0.612]

# of Observations 4484 4484 4484 4484 4484 4484

OLS, standard errors clustered at the district level in parentheses. For quantile regression, bootstrapped
standard errors clustered at the district level in parentheses obtained with 500 × 100 replications

Table 9: IV and IVQR estimations, Rural

IV Rural: IV Quantile regressions
Dep.var: 10% 25% 50% 75% 90%
child height-for-age z-score (1) (2) (3) (4) (5) (6)

Access to water 0.030
(0.107)

0.329
(0.143)

0.142
(0.122)

−0.015
(0.092)

0.013
(0.113)

−0.140
(0.135)

Access to health services 0.187
(0.082)

0.221
(0.108)

0.215
(0.103)

0.176
(0.081)

0.238
(0.101)

0.185
(0.110)

Included control variables:
Child characteristics Yes Yes Yes Yes Yes Yes
Household characteristics Yes Yes Yes Yes Yes Yes
Village characteristics Yes Yes Yes Yes Yes Yes

Test of the OID restrict.
[p−value]

0.069
[0.792]

Hahn-Hausman IV validity test

m3 test statistic
[p−value]

−0.015
[0.988]

# of Observations 2612 2612 2612 2612 2612 2612

Note: OLS, standard errors clustered at the district level in parentheses. For quantile regression, boot-
strapped standard errors clustered at the district level in parentheses obtained with 500 × 100 replications
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Table 10: IVQR: Test of equality of coefficients between quantiles, National/Rural

National Rural
F(27, 4454) p−value F(27, 2584) p−value

Null hypothesis
Q10 = Q25 1.14 0.28 0.77 0.79
Q10 = Q50 2.57 0.00 1.06 0.37
Q10 = Q75 6.00 0.00 3.21 0.00
Q10 = Q90 13.15 0.00 8.22 0.00
Q25 = Q50 3.90 0.00 2.18 0.00
Q25 = Q75 7.53 0.00 4.28 0.00
Q25 = Q90 20.95 0.00 10.93 0.00
Q50 = Q75 6.38 0.00 2.62 0.00
Q50 = Q90 18.20 0.00 8.40 0.00
Q75 = Q90 6.98 0.00 4.63 0.00

Joint test of equality of all F(108, 4454) F(108, 2584)
slopes coefficients 8.95 0.00 4.73 0.00
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Figure 1: Distribution of OLS and QR estimates, National

National, OLS and QR: Water National, IV and IVQR : Water
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Figure 2: Distribution of OLS and QR estimates, Rural

Rural, OLS and QR: Water Rural, IV and IVQR: Water
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