Exchange Market Pressure in African Lusophone Countries¹

Jorge Braga de Macedo,² Luís Brites Pereira³ & Afonso Mendonça Reis⁴

14 September 2007

Abstract

This paper explores the credibility of exchange rate arrangements for the five African Portuguese-speaking (PALOP) countries. Our working hypothesis is that credibility necessarily implies low mean exchange market pressure (EMP), low EMP conditional volatility and low-severity EMP crises. In addition, economic fundamentals must account for EMP dynamics. We also seek evidence of a risk-return relationship for mean EMP and of "bad news" (negative shocks) having a greater impact on EMP volatility than "good news" (positive shocks). Using our econometric models, we are able to rank PALOP countries' conditional volatility in ordinal terms. Our main conclusion is that countries with currency pegs, such as Guinea-Bissau (GB) and Cape Verde (CV), clearly have lower volatility when compared to those with managed floats and are therefore more credible. Moreover, EMP crises episodes under pegs are much less severe. We find that economic fundamentals correctly account for mean EMP in all countries and that the risk-return relationship is much more favourable for investors under currency pegs, as the increase in volatility is lower for the same rate of return. The exception to this finding is Mozambique (MOZ), which apparently has a risk-return profile akin to that enjoyed by countries with pegs. A plausible reason is that MOZ has the only managed float in our sample implementing monetary and exchange rate policy within the confines of an IMF framework, which establishes floors for international reserves and ceilings for the central bank's net domestic assets. This intuition needs to be tested, however. EMP conditional volatility is generally driven by changes in domestic credit (lowers it) and foreign reserve changes (raises it). The first effect is more pronounced under currency pegs, but also under MOZ's managed float. "Bad news" increases volatility more that "good news" only in the case of CV's currency peg, which we take to be another sign of its credibility. A few striking cross-country comparisons also emerge in our analysis. Among countries with managed floats, we find that Angola (ANG) has the most severe EMP crises whilst MOZ has the least severe. São Tomé & Princípe (STP), meanwhile, lies between these two extremes but its EMP crises behaviour is clearly much closer to that of MOZ. STP's credibility may also be improving since its volatility has declined as of 2002 and its level is now much closer to that of MOZ, whose managed float has lowest volatility of such arrangements.

Keywords: Exchange Rate Regime, Exchange Market Pressure, EGARCH-M

JEL Classification: C22, F31, F33

¹ First draft of paper to be presented at the African Economic Conference in Addis Ababa, Ethiopia on 15-17 November 2007.

², President of the Tropical Research Institute (IICT), Professor of Economics at Nova University, both in Lisbon.

³ Research Fellow of the Tropical Research Institute (IICT), Assistant Professor, Faculty of Economics at Nova University. Corresponding author's email address: Ipereira@fe.unl.pt

⁴ Graduate Student at Nova University, Lisbon

1. Introduction

Global financial markets change the environment for economic policymaking, most visibly in the choice of exchange rate regime. When capital markets are integrated, the main issue becomes that of the relative importance attached to exchange rate stability and domestic monetary independence. At the heart of this issue is the so-called "impossible trinity" dilemma, which holds that a country can only attain two of the following three goals simultaneously: exchange rate stability, monetary independence and financial-market integration. Monetary independence is clearly greater under floating exchange rates, as the value of a currency is allowed to vary continuously in response to prevailing exchange market pressure (EMP), which reflects the excess demand for a currency arising when the total value of foreign goods and assets demanded by domestic residents is higher than that demanded by foreigners at the prevailing exchange rate. However, the benefit of greater independence has to be balanced against the cost of greater volatility and uncertainty in real exchange rates.

For many developing countries, limiting exchange rate variability by fixing a domestic currency's value to that of a sounder foreign currency is often seen as desirable. The reason is that fixing the exchange rate provides a nominal anchor that has two important benefits. First, it fixes the inflation rate for internationally traded goods, and so contributes to controlling inflation. Second, it anchors domestic inflation expectations to the anchor country's inflation rate. As a result, domestic inflation falls in line with that of the anchor country, as do interest rates. Under free capital mobility, a credible currency-peg implies that a country has in effect adopted the anchor country's monetary policy and, consequently, its low expected inflation. Under fixed exchange rates, the burden of adjustment to prevailing EMP thus falls exclusively on foreign reserves and interest rate changes.

With respect to intermediate arrangements, a major policy debate in the literature is whether these are viable or not. Under such arrangements, EMP is relieved by some combination of changes in the exchange rate, in foreign reserves and in domestic credit. The focus on intermediate arrangements is particularly relevant given that almost all currency crises in the past decade took place against a background of fixed but adjustable exchange rates, i.e. arrangements allowing a step change in the value of a currency as a result of a discretionary decision by domestic monetary authorities.

It is noteworthy that currency crises often became financial crises as sovereign credit ratings plummeted and access to international capital was lost following a currency's collapse. In this regard, the East Asian "twin" financial and currency crashes of the 1990s underscored the relative ease with which it was possible to implement the "wrong" combination of currency pegs and economic policy under a given degree of financial-market integration. The commitment of authorities who seek exchange rate stability, through the adoption of fixed but adjustable exchange rate regimes, is therefore likely to be tested under financial-market integration.⁵ More recently, this policy debate has become more prominent in connection with the so-called "benign peg" of the Chinese currency to the US dollar.⁶

⁵ The relevance of the European Payments Union is pointed out in Braga de Macedo & Eichengreen (2001c). The "Eurocentric" view has been presented as evidence of an intermediate exchange rate system which helps acquire financial reputation and is applied to the Franc zone and to Latin America in Braga de Macedo, Cohen & Reisen (2001b). The "Eurocentric" view essentially extends an interpretation of the first European attempts at promoting a multilateral payments system into an argument for improving regional monetary and fiscal surveillance. While the quantitative relevance of multilateral surveillance to international lenders and credit rating agencies' scrutiny has not been tested directly, the European experience does signal when it is bound to be especially intense.

⁶ Indeed, a possible explanation of the current international monetary system goes back to the Bretton Woods system. This was discussed at a conference at the University of Santa Cruz in May 2006 on "The Euro and the

The literature also highlights the consensual view that policymakers will always have to take into account financial markets' responses to their policy actions in seeking an optimal tradeoff between exchange rate stability and domestic monetary independence. After a country has chosen its exchange rate policy regime (fixed, floating, or fixed-but-adjustable) under a given degree of financial market integration, it then has the task of adapting its domestic economic policy and institutional environment in accordance with that choice. Indeed, the extent to which it is able to establish a credible interaction between a country's financial-market integration, exchange rate arrangements and the accompanying policy and institutional responses will be paramount in establishing its reputation in international financial markets.⁷

For any country, establishing financial reputation is important for two reasons: First, it leads to a low-risk borrower profile and improved credit terms when seeking foreign capital, as reflected in its international credit rating. Second, it is conducive to low and more stable domestic interest rates, especially under fixed exchanges. Given that interest rates are an inter-temporal price, and, as such, heavily influenced by agent's expectations, low interest rate spreads are considered to be an indicator of financial reputation.

The range of reforms required to establish financial reputation is very broad, but the scrutiny of international lenders and credit rating agencies usually focuses on monetary and fiscal issues.⁸ Moreover, when the exchange rate regime is chosen based on a social concern for financial reputation, the choice is not necessarily restricted to the two corner solutions of a hard peg or a pure float.⁹ Intermediate regimes can thus be justified in spite of the logic behind the so-called "impossible trinity" dilemma, contrary to the dominant conventional wisdom of the late 1990s. Intermediate solutions do, however, raise the issue of the effectiveness and durability of capital controls, an issue we do not pursue here.

The observation that acquiring financial reputation necessarily implies a positive interaction between financial-market integration, exchange rate regime and economic policy motivates our collective research interest. An additional motive is the absence of empirical studies that characterises existing literature, which is especially relevant in the case of many African countries. In the past, we researched the Portuguese Escudo's entry into the Euro, the credibility of Macau's currency board and of Cape Verde's currency peg.¹⁰ Building upon our

⁷ For a central bank, credibility is usually associated with the perception of inflation aversion, even though other meanings such as incentive compatibility or pre-commitment have been pointed out. See Goldberg & Klein (2006).

⁸ Three related points come to mind in this connection. First, the design of reforms may help speed up the process of earning financial reputation, not least by sustaining the growth process, see Braga de Macedo & Oliveira Martins (2006). Second, the scrutiny mentioned in the text has been close enough to reveal a positive relationship between globalisation and governance, measured by trade flows and corruption indices in Bonaglia, Braga de Macedo & Bussolo (2001). Third, the international monetary system may help or hinder the process: an historical perspective between the gold and the euro standards is provided in Braga de Macedo, Eichengreen & Reis (1996).

Reis (1996). ⁹ Monetary transitions on the part of the new EU member states are therefore described as "float in order to fix" in Braga de Macedo & Reisen (2004).

¹⁰ Braga de Macedo (1996, 2001), Braga de Macedo, Catela Nunes and Covas (1999, 2004a), and using intervention data, Braga de Macedo, Catela Nunes & Brites Pereira (2003), and Brites Pereira (2005a, b); Braga de Macedo, Braz, Brites Pereira & Catela Nunes (2006); Braga de Macedo & Brites Pereira (2006);

Dollar in a Globalised Economy", where one of us commented on a presentation by Michael Dooley on Interest rates, Exchange Rates and International Adjustment based on a joint paper with David Folkerts-Landau and Peter Garber. The argument that, under a fixed exchange rate between the Yuan and the US Dollar, China becomes a periphery of the US is based on the persistence of effective capital controls between the two currency areas and on perfect substitutability between euro and dollar denominated assets. As discussed in Kouri & Braga de Macedo (1978) and Krugman (1981), these assumptions are questionable to the extent that there is imperfect substitutability between euro and dollar denominated assets and that capital controls are quickly eroded under <u>financial globalisation</u>.

past experience, we now intend to analyze exchange market pressure (EMP) for the case of African Portuguese-speaking, or Lusophone, countries, namely: Angola (ANG), Cape Verde (CV), Guinea-Bissau (GB), Mozambique (MOZ) and São Tome and Principe (STP), hereafter PALOP countries.¹¹ While sharing a common development challenge, this group of countries encompasses different institutional options and economic policies.

In particular, their exchange rate arrangements differ. ANG, MOZ and STP operate managed floats with no pre-determined path for the exchange rate. MOZ, in addition, has the only managed float that implements monetary and exchange rate policy within the confines of an IMF framework establishing floors for international reserves and ceilings for the central bank's net domestic assets. CV and GB, meanwhile, both have pegs against the Euro. In the case of GB, this implies the absence of separate legal tender as it is a member of the West African Economic and Monetary Union (WAEMU), whose currency is the West African CFA franc.

As such, it will particularly interesting to assess the credibility of exchange rate arrangements for each PALOP country. Our working hypothesis is that credibility necessarily implies low mean EMP, low EMP conditional volatility and low-severity EMP crises. In addition, economic fundamentals must account for EMP dynamics. We also seek evidence of the risk-return relationship for mean EMP and of "bad news" (negative shocks) having a greater impact on EMP volatility than "good news" (positive shocks), as discussed below.

The rest of the paper is as follows. In section 2, we measure EMP and identify crises episodes for each country. Section 3 looks at the stochastic properties of EMP and explores to what extent these can be explained by economic fundamentals. We present our conclusions in section 4. The appendix contains the country files, each containing tables and figures relating to EMP estimates, EMP descriptive statistics, EMP crises episodes, econometric results and diagnostics, and also the description of data used in the estimations.

2. Measuring EMP

The literature identifies two ways of measuring EMP.¹² The first, following Girton & Roper's (1977) seminal contribution, measures EMP as a weighted sum of changes in foreign reserves and exchange rate changes. The insight underlying this summary statistic is that exchange rate changes necessarily reflect a central bank's passive adjustment to EMP while its purchases/sales of foreign assets are its active response. The precision weights adopted in this measure are typically estimated from a structural model of the economy, implying that these EMP measures are model-dependent.

A second approach, proposed by Eichengreen, Rose & Wyplosz (1995, 1996 – ERW, hereafter), holds that model-dependency is undesirable given the tenuous connection between the exchange rate and economic fundamentals. As such, a model independent or *ad-hoc* EMP measure is calculated based on the channels through which EMP is relieved, which can include the interest rate channel unlike the first approach. EMP is measured as a weighted linear combination of these channels, where the precision weights are typically chosen so as to equalise the conditional volatilities of EMP measure's constituent components.

Our choice of summary statistic falls on the ERW approach for two reasons: first, the importance of the interest rate channel in altering the relative supply of domestic money *vis*-

¹¹ The acronym is Portuguese for Portuguese-speaking African Countries. All five countries are also members of the Community of Portuguese-Speaking Countries (*Comunidade dos Países de Língua Portuguesa - CPLP*).

¹² For a comprehensive review of EMP literature, refer to Weymark (1995, 98) and Spolander (1999).

à-vis foreign monies, especially under fixed exchange arrangements; second, the severe lack of data needed to estimate structural models, and hence model-based precision weights, for PALOP countries. As such, our EMP summary statistic assumes that the strain on a country's external imbalance is absorbed by changes in the exchange rate (Δe_t^{13}), in foreign exchange reserves (Δr_t) and in the interest rate differential $\Delta (i_t - i_t^*)$. It is calculated as a weighted linear combination of these observed changes:

$$EMP_{t} = \Delta e_{t} + \eta_{r} \Delta r_{t} + \eta_{i} \Delta (i_{t} - i_{t}^{*})$$

In accordance with the ERW approach, we equalise volatilities of the EMP measure's constituent components because one of the components will dominate EMP measures in the absence of this procedure.¹⁴ Here, Δe_t is the reference variable and so the precision weights are calculated as $\eta_r = -SD(\Delta e_t)/SD(\Delta r_t)$ and $\eta_i = SD(\Delta e_t)/SD(\Delta(i_t - i^*_t))$, where *SD* denotes the standard deviation of the variable under consideration. The weights take on the signs $\eta_r < 0$ and $\eta_i > 0$ as central banks intervene by selling (purchasing) foreign reserves in response positive (negative) EMP while the interest rate differential increases (decreases) as domestic interest rates are raised (lowered).

Table 1 - EMP Descriptive Statistics (% per month)									
Country	ANG	CV	GB	MOZ	STP				
Mean	5,06	-0,05	-0,01	-0,07	0,43				
SD	34,87	1,46	0,73	4,31	7,07				
Max	190,66	4,86	3,12	12,84	24,06				
Min	-210,6	-5,31	-2.90	-19,85	-27,14				

Table 1 - EMP Descriptive Statistics (% per month)

Note: Statistics are calculated using the full sample. See the appendix for additional statistics.

Note: Annual values are calculated as average of monthly EMP estimates.

¹³ $\Delta e_t > 0$ denote exchange rate depreciations.

¹⁴ Recent research highlights that EMP summary statistics calculated using the ERW approach are sensitive to the assumptions regarding their constituent components (see Bertoli, *et al.*, 2006 and also Li *et al.*, 2006). The assumptions of relevance to our analysis have to do with the manner in which exchange rate variations are computed (exact formula versus logarithmic approximation), the different definitions of reserves (gross versus net), the constancy of precision weights over time and the choice of anchor currency. Our robustness analysis indicates that EMP summary statistics obtained under a different set of assumptions are broadly similar to the ones used in the analysis. As such, they will not change the ordinal ranking of PALOP countries' conditional volatility presented here. The robustness analysis results, which also include estimated precision weights, are available from the authors upon request.

The descriptive statistics of our estimated EMP measures are given in Table 1.¹⁵ Looking at mean EMP values, we observe that CV, GB and MOZ are characterised by slightly negative EMP (close to zero) over the sample period, which is of a very similar order of magnitude for all these countries. The other two countries, meanwhile, have positive EMP but the mean for ANG is much larger than that of STP, as is also clear from Figure 1. The unconditional standard deviation and EMP range statistics allows us to refine this observation. Indeed, now we are able to classify the five countries into two distinct groups based on the ranking of these last two descriptive statistics. The countries with currency pegs clearly exhibit lower volatility and a smaller range of EMP variation. The countries with managed floats are much more volatile. ANG exhibits the greatest unconditional volatility (34.87%), followed by STP (7.07%) and then MOZ (4.31%). This classification is confirmed upon inspection of Figure 2, which shows the annual average of monthly EMP standard deviations for the two types of exchange rate arrangements.

Next, we proceed to identify crisis episodes, which we take to be those EMP values exceeding some pre-established critical threshold. We bear in mind, however, that the definition of these thresholds entails using a discretional "rule of thumb". As such, we consider three different thresholds to ensure a more robust analysis. A crisis episode is thus

¹⁵ See the appendix for estimated EMP values, their constituent components and their graphical representation.

identified when an EMP measure exceeds mean EMP by 1.5 SD, 2.5 SD and 3.5 SD respectively. Accordingly, we classify EMP crises as having a low, moderate or high severity. Note that these classifications will not correspond to the same magnitudes of EMP when comparing across countries, given their different levels of mean EMP. The EMP crises statistics are given in Table 2 while EMP crises tables for each country are provided in the appendix.¹⁶

Country	ANG	CV	GB	MOZ	STP			
Low								
EMP Mean	114,56%	3,26%	2.21%	9,48%	17,20%			
EMP SD	56.57%	1.13%	0.85%	2.80%	3.37%			
Crises	4	7	8	5	7			
Moderate								
Mean EMP		4.81%		12.05%	24.06%			
EMP SD		0.08%		1.13%				
Crises	2+	2	1+	2	1			
		Hi	igh					
Mean EMP	156.14%		4.22%					
EMP SD	48.82%							
Crises	2+	0	1+	0	0			

Table 2 - EMP Crises Statistics

Note: The symbol (⁺) denotes that the same events are being considered in the calculations.

Our first observation is that the number of crises varies across countries but not significantly. However, the severity of crises differs substantially. In the case of ANG, for example, we identify four crises at the lower threshold of which two are classified as severe. In contrast, GB experienced eight crises but only one of these was a high-severity crisis having a similar order of magnitude as CV's single moderate-severity crisis. The finding that the severity of crises episodes. GB and CV had positive EMP crises of magnitude 2.21% and 3.26% respectively at the 1.5SD threshold. The comparable figures for MOZ and STP are 9.48% and 17.20% while that of ANG is 114.56%.

Two findings thus emerge from our crises analysis. First, EMP crises under currency pegs are much less severe than those under managed floats at all threshold levels. Second, ANG has the most severe EMP crises whilst MOZ has the least less severe ones among countries with managed floats. STP, meanwhile, lies between these two extreme but its EMP behaviour is clearly much closer to that of MOZ. We note that these findings corroborate those established in our descriptive analysis above. In order to better understand these findings, we now turn to the study of EMP's stochastic properties in the next section.

3. EMP Dynamics

Our modelling approach is dictated by two concerns: first, we want to capture possible heteroscedasticity effects, volatility clustering and leverage effects associated with asymmetric responses shocks of the EMP series; second, we want to be able to compare EMP behaviour for the five PALOP countries within an economically meaningful framework. Given these objectives and following the modelling approach adopted in related work (Braga de Macedo *et al.* (2006), we estimate exponential GARCH in the mean (EGARCH-M) models. These models allow mean EMP to depend on its own conditional variance à la Engle

¹⁶ In the tables, crises episodes are identified in **bold** type while the colours **black**, **blue** and **red** indicate that EMP exceeds the 1.5 SD, 2.5 SD and 3.5 SD thresholds respectively.

et al. (1987), thereby capturing the basic insight that risk-averse agents will require compensation for holding a country's risky assets, especially as these are typically denominated in domestic currency. Given that an asset's riskiness can be measured by the variance of returns, the risk premium is an increasing function of the returns' conditional variance. The actual specification adopted is as follows:

$$\begin{split} EMP_t &= \mu \ln \sigma_t^2 + \theta x_t + \sum_{i=1}^m \zeta_i EMP_{t-i} + \sum_{j=1}^n \psi_j \epsilon_{t-j} + \epsilon_t \\ \ln \sigma_t^2 &= \lambda s_t + \sum_{j=1}^p \beta_j \ln \sigma_{t-j}^2 + \sum_{i=1}^q \left(\alpha_i \left| \frac{\epsilon_{t-i}}{\sigma_{t-i}} \right| + \gamma_i \frac{\epsilon_{t-i}}{\sigma_{t-i}} \right) \\ \epsilon_t &= \sigma_t z_t \\ z_t &\sim D_{\vartheta}(0, 1) \end{split}$$

where ϵ_t is the error disturbance term, assumed to have a zero mean and to be serially uncorrelated, and $D_{\Theta}(0, 1)$ is a probability density function with zero mean and unit variance.¹⁷

The EMP mean equation incorporates the effect of economic fundamentals, whose impact is captured by the $k \times 1$ vector of explanatory variables x_t (includes a constant term where necessary), with θ being the respective $1 \times k$ coefficient vector. The risk-return relationship, meanwhile, is captured by the parameter μ . All explanatory variables are lagged one period in order to avoid the problem of contemporaneous simultaneity with the dependent variable. We also allow for *ARMA* (*m*, *n*) terms given the lack of data pertaining to economic fundamentals for all countries in our sample, as discussed below. In the conditional variance equation, s_t is an $r \times 1$ vector of explanatory variables (includes a constant term), and λ is the respective $1 \times r$ coefficient vector. Note that the left-hand side above is the logarithm of the conditional variance, which implies that the associated leverage effect is exponential rather than quadratic. In addition, forecasts of the conditional variance are guaranteed to be non-negative under this specification.

The literature identifies various macroeconomic fundamentals that could be considered as possible explanatory variables in our model. Some of these include:¹⁸ a) the rate of inflation, as it is associated with high nominal interest rates and may proxy macroeconomic mismanagement that adversely affects the economy (Demirguc-Kunt & Detragiache, 1997); b) the real exchange rate, given that currency over-valuations may deteriorate the current account and have historically been associated with currency crises (Berg et al., 1999); c) import and export growth which, when problematic, may lead to current account deteriorations that trigger currency crises (Dowling & Zhuang, 2000, Berg & Patillo, 1999); d) growth in monetary aggregates, e.g. excessive M1 growth might indicate excess liquidity and, hence, increased EMP that leads to speculative attacks (Eichengreen et al., 1995); e) domestic credit, given that high debt levels are conducive to banking sector fragility (Kaminsky & Reinhart, 1998); f) public debt, as higher public indebtedness is expected to raise vulnerability to a reversal in capital inflows, and hence to raise the probability of a crisis (Lanoie & Lemarbre, 1996). g) current account, as deficits are associated with large capital inflows, which indicate a diminished probability to devalue and thus lower the probability of a crisis (Berg & Patillo 1999); h) fiscal balance, as deficits are expected to raise the probability

 $^{^{17}}$ Optionally, Θ are additional distributional parameters that can be used to describe a distribution's skew and shape. For a full discussion of this class of models, refer to Engle (1982) and Bollerslev (1986). In practice, we found that models were best estimated assuming normally-distributed errors.

¹⁸ For more details, refer to Feridun (2007), who provides a useful summary that also includes several indicators describing banking sector vulnerability. See also Flood & Marion (1998).

of crisis since they increase the vulnerability to shocks and investor's confidence (Demirguc-Kunt & Detragiache, 1997).

For PALOP countries, however, our choice of explanatory variables is severely restricted by the lack of data. At best, the publicly available data have a trimesterly or annual frequency, which is too low to use in our econometric models. More frequently, the data simply do not exist. In practice, we are able to use two fundamentals for the mean equation that have the desired monthly frequency (see the appendix for the data description): domestic credit growth rate (*dc*_{*t*}) and the real depreciation rate (*q*_{*t*}).¹⁹ In the conditional variance equation, we include foreign reserve changes (*r*_{*t*}) in addition to the afore-mentioned variables, given their important role in EMP dynamics, especially under currency pegs.²⁰ For ANG, changes in oil prices are also used due to the importance of oil exports in its economy. Explanatory variables are lagged at least one period to avoid possible simultaneity bias in our estimations. The presence of a time trend in our monthly model of EMP is meant to capture the lower frequency trend that may exist in exchange rates due to aggregation of data, in particular, and omitted variables, in general.²¹

Where appropriate, we test for the inclusion of dummy variables that are related to the occurrence of known economic events, e.g., CV's adoption of a currency peg in 1999:01, GB's implementation of its accession agreement with the WAEMU in 1997:05, etc. (see appendix the for dummy variable definitions). We also consider dummies that capture observed idiosyncratic events which clearly impact our estimations, e.g. the influx of MOZ's donor aid arrears in late 2004 and the subsequent need for depreciation of the MZM in 2005:04/05. In the conditional variance equation, the dummy variables included are identified using Inclan & Tiao's (1994) CSUM test, which tests for structural breaks in volatility.

Turning to the expected signs of the mean equation's explanatory variables, domestic credit growth necessarily lead to greater EMP, hence estimated coefficients will be positive. On the other hand, real depreciation leads to lower EMP, implying that expected signs are negative. In an EMP context, the risk-return relationship implies that holding assets of a country in which EMP-volatility is high (large σ_{t}^2) should be compensated by a larger return (lower EMP), implying that μ is negative.²² Note also that μ is interpretable as the semi-elasticity of changes in EMP for a given percentage change in conditional volatility.

As for conditional variance, the expected signs of the explanatory variables are not easily predictable *a priori* on theoretical grounds but their effects are easily interpretable upon estimation. In the case of foreign reserves, for example, a negative coefficient indicates that an increase in foreign reserves lowers conditional volatility. Finally, the impact of shocks is asymmetric if γ is different form zero while the presence of leverage effects can be tested under the hypothesis that γ is negative, which implies that negative shocks increase volatility more than positive ones of an equal magnitude.²³ A plausible explanation for this asymmetric

¹⁹ Note that it was not possible to calculate q_t for STP due to lack of data regarding prices changes for this country.

²⁰ Changes in reserves and in the interest rate differential are not included in the mean equation as they are already present in the EMP measure.
²¹ The first situation may lead to persistence that induces slight regime switching behaviour, due to agents'

²¹ The first situation may lead to persistence that induces slight regime switching behaviour, due to agents' perceptions of the market and of policy actions, and possibly by the exchange-rate policy stance. ²² For exchange rates, the risk premium associated with the underlying volatility can be either positive or negative.

²² For exchange rates, the risk premium associated with the underlying volatility can be either positive or negative. Engel (1996), for example, shows that the direction of the effect of conditional variance on risk premiums depends on the variance of nominal consumption. Fukuta & Saito (2002), meanwhile, shows that the signs of the coefficients on risk premiums depend on the covariance between consumption growth and inflation, the intertemporal marginal rate of substitution, and the variances of inflation in Japan and the United States.

²³ Standard GARCH models assume that positive and negative error terms have a symmetric effect on the volatility. i.e. good and bad news have the same effect. In practice this assumption is frequently violated, in particular by stock returns, as noted by Black (1976). A likely reason for stock returns' asymmetric leverage effect

leverage effect in the case of EMP is that risk perceptions of negative EMP tend to increase when upside volatility increases more than downside volatility. Moreover, this behaviour is to be expected mainly in mature financial markets, as opposed to those which are less sophisticated and underdeveloped.

Our econometric analysis comprises the relatively short period of 1996:01 to 2005:09, as the adoption of a common analysis period required for cross-country comparisons reduces the effective sample size. In estimating our EGARCH-M models, we started with a general specification of the mean and variance equations. The orders of the variance equation and ARMA process in the mean equation were determined by the partial autocorrelation and the autocorrelation function of the EMP series. Non-significant variables are excluded from estimated equations where appropriate. We use the Schwartz Information Criterion (SIC) to assess a model's relative fit, implying that we choose those models for which the (negative) SIC is smallest. The final EGARCH-M specifications are decided by looking at the properties of standardised residuals (SR) and squared standardised residuals (SSR).

The models are estimated using E-Views 5.0, and we employ the Marquardt nonlinear optimization algorithm to compute maximum likelihood parameters. Bollerslev & Wooldridge (1992) note that maximising a mis-specified likelihood function in a GARCH framework provides consistent parameter estimates, even though standard errors will be understated. Accordingly, we use their consistent variance-covariance estimator to correct the covariance matrix. As such, we report asymptotic standard errors for estimated parameters which are robust to departures from normality.

Correctly specified EGARCH-M models will have SR and SSR that are white noise, i.e. they are independent and identically distributed random variables with mean zero and variance one. As model diagnostic tools, we use the modified Box-Ljung (B-L) procedure on the SR series to test for remaining serial correlation in the mean equation. To detect remaining ARCH effects in the variance equation, we use the B-L test as well as the ARCH-LM test on SSR. Based on the results of the diagnostic tests, we find ample support for our model specification. The B-L Q-statistics are insignificant at the 5% level for both the mean and variance equation, as are those of the ARCH-LM test.

The summary of our EGARCH-M estimation's results is given in Table 3.²⁴ For all countries, we find economic fundamentals to be significant in the mean equation, as monetary expansions are associated with higher EMP while real exchange rate depreciations lead to lower EMP. The degree of response appears to differ across countries, however. Our estimations suggest that the effect of a 1% increase in domestic credit on EMP is greatest in CV (5.81%) and MOZ (3.60%, at lag 6).²⁵ This finding apparently suggests that conditions in monetary and exchange rate markets are more closely related in CV and MOZ than in the other countries.

The fact that we do not any find such evidence for GB is probably not unsurprising given the unit of analysis being considered. We are confident that were we to consider changes in domestic credit for whole of the CFA currency area, instead of only those in GB, similar evidence is likely to emerge. For ANG, the apparent weakness of linkages between these markets is reinforced by the fact that estimated coefficients are only significant at the 5% level, which contrasts with the case of other PALOP countries. With regards to real exchange rate depreciations, the evidence is broadly similar across countries with the exception of GB,

is that negative returns imply a larger proportion of debt through a reduced market value of the firm, hence higher volatility.

²⁴ Full estimation results and diagnostics are provided in the appendix.

²⁵ A degree of caution must be exercised when interpreting this result, as changes in domestic credit that arise from monetary authorities' sterilisation activities cannot be identified using publicly available data.

where these have a smaller effect on EMP, in all likelihood due to the same reason given above.

	Variables	ANG	CV	GB	MOZ	STP	
Risk-return relationship	Estimated return (%) (annual equivalent)	-3.59** <i>(-43.08)</i>	-0.23** <i>(-2.76)</i>	-0.05** <i>(-0.60)</i>	-0,11* <i>(-1.32)</i>	-1.58** <i>(-18.96)</i>	
	Effect of 1% increase	<i>lag(-1)</i> 0.47*	lag(-4)	lag(-4)	<i>lag(-6)</i> 3,60**	<i>lag(-8)</i> 0.48**	
Economic	in domestic credit (%)	<i>lag(-8)</i> 0.35*	5.81**	0.61**	<i>lag(-9)</i> 3,20**	<i>lag(-11)</i> 0.90**	
Tunuamentais	Effect of 1% real	<i>lag(-4)</i> -28.05**	lag(-3)	lag(-7)	<i>lag(-3)</i> -23,79**		
	depreciation (%)	<i>lag(-7)</i> -15.35**	-18.96**	-4.65**	<i>lag(-8)</i> -38,95**		
	D_ER_LIB	1.27**					
	D_R_SHIFT	0.45**					
Dummies	D_AID_CONCENT				0.10**		
	D_05_97			-0.01**			
	D_08_97				-0.08**		
	D_12_97					-0.10**	
Time Trend		- 0.002**					

Table 3a - Summary of EGARCH-M Estimation Results - Mean Equation

Note: (--) not applicable due to lack of data or relevance. A double (single) asterisk indicates that the estimated parameter is significantly different from zero at the 1% (5%) level.

We also find evidence of the risk-return relationship but it differs across countries rather significantly. While GB has the lowest estimate 0.60% p.a., the estimates CV and MOZ's estimates are of a close order of magnitude, as a 1% increase in volatility is associated with a reduction in mean EMP of 2.76% and 1.32% p.a. respectively. In contrast, the risk-return relationship in ANG and STP is clearly more extreme, as our estimates imply that holders of these countries assets would respectively expect to be compensated by a 43.08% and a 18.96% p.a. EMP reduction for the same increase in volatility.

The estimates for dummy variables provide additional insight into mean EMP dynamics. The liberalisation of ANG's exchange rate on 2002:12 (dummy D_ER_LIB), possibly coupled with other foreign exchange-market policy management mechanisms introduced around this period, lead to a strong AOA depreciation and significant positive EMP. In addition, during 1999:05, an unexplained and large reduction in ANG's foreign reserves, which fell from 741.26 to 375.55 million USD, increased EMP (dummy D_R_SHIFT). The same occurs when the MZM depreciates in 2005:04/05 (dummy D_AID_CONCENT), thereby partially reversing the currency's appreciation streak that resulted from the concentration of donors payment arrears at the end of 2004. GB's entry to the WAEMU, agreed upon in 1996:12 but only effective as of 1997:05, is clearly associated with a reduction in EMP volatility (dummy D_05_97) and so is MOZ's substantial reduction in interest rates in 1997:07 (dummy D_8_97). In the case of STP, an inspection of its exchange rate data suggests that some sort of "regime change" takes place toward the end of 1997, which marks the end of period of relatively large STD depreciations (dummy D_12_97). The respective dummy's estimate

confirms this intuition, as it indicates that this "regime change" effectively lowered EMP as of 1998:01. There is no evidence of time trend behaviour with the exception of ANG, where the estimated coefficient is significant but has a very small magnitude.

	Variables	ANG	CV	GB	MOZ	STP
	Changes in domestic credit	<i>lag(-3)</i> -0.10**	<i>lag(-3)</i> -25.91**	<i>lag(-3)</i> -2.86**	<i>lag(-2)</i> -3.31** <i>lag(-3)</i> -1.27**	<i>lag(-3)</i> -0.36**
Economic	Changes in real exchange		<i>lag(-1)</i> -19.97**			
Variables	Changes in		<i>lag(-4)</i> 2.20**	lag(-2)	<i>lag(-1)</i> 11.30**	<i>lag(-6)</i> -1.48*
	foreign reserves		<i>lag(-8)</i> 3.86**	2.13**	<i>lag(-12)</i> 10.39**	<i>lag(-8)</i> 2.39**
	Changes in oil prices	<i>lag(-4)</i> 4.23**				
	D_08_97				-2.42**	
Dummies	D_12_97					-3.29**
	D_10_99	-1.76**				
	D_06_01					-2.86**
Asymmetric Leverage Effect		0.44**	-0.71**		0.66**	
Time Trend		0.02**	-0.03**		0.02**	0.04**

Table 3b - Summary of EGARCH-M Estimation Results - Variance Equation

Notes: (--) not applicable due to lack of data or relevance. A double (single) asterisk indicates that the estimated parameter is significantly different from zero at the 1% (5%) level.

Addressing the conditional variance, we find that increases in domestic credit are always associated with lower volatility. This effect seems to be more pronounced in CV, GB and MOZ, as was also the case for mean EMP, and is less pronounced in ANG and STP. Real exchange rate changes have the same effect but only for CV. Foreign reserve changes generally increase volatility with the exception of ANG, where changes oil prices have the same impact.²⁶ Evidence of asymmetric effects of shocks on volatility is found for ANG, CV and MOZ while negative shocks increase volatility more that positive ones only for CV. The absence of the last effect for GB is again probably due to the reason earlier.

Various structural breaks are also found to be associated with lower volatility: 1999:10 (ANG), 1997:08 (MOZ), 1997:12 and 2001:06 (STP). Some of these breaks appear to be associated with known economic events. For instance, the break identified for MOZ in 1997:08 in all likelihood reflects the introduction of the Maputo inter-bank offered rate (MAIBOR) during the previous month, which fell substantially from 35.80% to 13.35%. With the exception of GB, time trend variables are significant for PALOP countries, which

²⁶ STP presents mixed results as foreign reserve changes *decrease* volatility at lag 6 but increase it at lag 8.

suggests that our model of conditional volatility will benefit from the inclusion of other economic variables should these become available.

Finally, we look at the conditional volatility series resulting from our model estimations in order to determine whether our initial finding that countries with currency pegs have lower volatility is confirmed. In Figure 3, we again group countries according to their exchange rate regime but now include MOZ in both in order to facilitate comparisons. Overall, we confirm this finding and the ordinal ranking that emerges from observing unconditional volatility (Figure 2). Moreover, two additional observations can be made. First, "pre-peg" CV and MOZ exhibit similar volatility prior to 1999. CV's currency peg has had markedly lower volatility since then, with the exception of 2000. Since 2002, this difference has been accentuated as MOZ's volatility has increased further. While the reason for this is unclear, this change might reflect the economic aftermath of the 2000-1 floods that severely affected MOZ. Second, STP's volatility level has declined since 2002 and is now much closer to that of MOZ, which has the managing float with the lowest conditional volatility.

Figure 3b - EMP Conditional Volatility (% p.a.) Two Currency Pegs, One Managed Float

4. Conclusion

Our main conclusion is that PALOP countries with currency pegs clearly have lower volatility when compared to those with managed floats. Moreover, EMP crises under pegs are much less severe. We find that economic fundamentals correctly account for mean EMP for all countries. The response of mean EMP to changes in domestic credit, however, is greatest in CV and MOZ, which apparently suggests that conditions in monetary and exchange rate markets for these countries are closely related. While the evidence is not as strong for GB, this is possibly due to the fact that this country is the only one in our sample which formally belongs to a monetary and currency union having the same legal tender for its members.

We also find that the risk-return relationship is much more favourable for investors under currency pegs, as the increase in volatility is lower for the same rate of (EMP) return. The exception to this finding is MOZ, which apparently has a risk-return profile akin to that enjoyed by countries with pegs. A plausible reason is that MOZ has the only managed float in our sample implementing monetary and exchange rate policy within the confines of an IMF framework, which establishes floors for international reserves and ceilings for the central bank's net domestic assets. This intuition needs to be tested, however, and as such is included in our future research agenda.

EMP conditional volatility, meanwhile, is generally driven by changes in domestic credit (lowers it) and foreign reserve changes (raises it). The first effect is more pronounced under currency pegs, but also under MOZ's managed float. Evidence of asymmetric effects of shocks on volatility is found for ANG, CV and MOZ while "bad news" increase volatility more that "good news" only for CV's currency peg, which we take to be a further sign of its credibility.

A few striking cross-country comparisons also emerged in our analysis. We find that ANG has the most severe EMP crises whilst MOZ has the least severe among countries with managed floats. STP, meanwhile, lies between these two extremes but its EMP crises behaviour is clearly much closer to that of MOZ. Our econometric models also permit us to rank PALOP countries' conditional volatility in ordinal terms. Based on these findings, it appears that MOZ's managed float has the greatest credibility for such arrangements as it has lowest volatility while ANG has the highest. STP's credibility may also be improving since its volatility has declined as of 2002 and its level is now much closer to that of MOZ.

Our future research agenda seeks to refine the above insights by seeking more data and better institutional knowledge for PALOP countries. This will allow us, for example, to fully explore crises episodes and structural breaks, and then relate these to policy and institutional changes. We also plan to undertake a comparative analysis using multivariate techniques, which might be instructive in terms of better policy design in the future. Hopefully, the techniques developed for this undertaking will also allow us to investigate other cases of interest in Africa, such as the CFA arrangement and the South African Rand's monetary zone.

References

Andreou, E. and E. Ghysels (2002) "Detecting Multiple Breaks in Financial Market Volatility Dynamics", available at http://ssrn.com/abstract=313639.

Berg, A., and C. Pattillo (1999) "Predicting Currency Crises: the Indicators Approach and an Alternative", *Journal of International Money and Finance*, Vol. 18, No. 4, (August), pp. 561-586.

Bertoli, S., Gallo G. M. and G. Ricchiuti (2006) "Exchange Market Pressure: Some Caveats in Empirical Applications", Working Paper 2006/17, Department of Statistics, University of Florence, Italy.

Black, F. (1976) "Studies in Stock Price Volatility Changes", *Proceedings of the 1976 Meeting of the Business and Economic Statistics Section*, American Statistical Association, pp. 177-181.

Bollerslev, T. (1986) "Generalized Autoregressive Conditional Heteroscedasticity", *Journal of Econometrics*, No. 31, pp. 307-27.

Bollerslev, T. and J. Wooldridge (1992) "Quasi-Maximum Likelihood Estimation and Inference in Dynamic Models with Time Varying Covariances", *Econometric Reviews*, No. 11, pp. 143-172.

Bonaglia, F., Braga de Macedo, J. and M. Bussolo (2001) "How Globalisation Improves Governance", CEPR Discussion Paper, No. 2992, October.

Braga de Macedo, J., Eichengreen B. and J. Reis (1996) editors, *Currency Convertibility: The Gold Standard and Beyond*, London: Routledge.

Braga de Macedo, J. (2001a) "Crises? What Crises? Escudo from ECU to EMU", in *Short-Term Capital Flows and Economic Crises*, edited by Stephany Griffith-Jones, Manuel Montes and Anwar Nasution, study prepared for UNU/WIDER, Oxford University Press, pp.253-260.

Braga de Macedo, J., Cohen, D. and H. Reisen (2001b), editors, *Don't Fix Don't Float*, Paris: OECD Development Centre.

Braga de Macedo, J. and B. Eichengreen (2001c) "The European Payments Union and its Implications for the Evolution of the International Financial Architecture", in *Fragility of the International Financial System - How Can We Prevent New Crises in Emerging Markets?*, edited by Alexandre Lamfalussy, Bernard Snoy and Jérôme Wilson, Brussels: PIE Peter Lang for Fondation Internationale Robert Triffin, pp. 25-42.

Braga de Macedo, J., Nunes, L. C. and L. Brites Pereira (2003) "Central Bank Intervention Under Target Zones: The Portuguese Escudo in the ERM", *FEUNL Working Paper*, No. 345, Lisbon: Universidade Nova de Lisboa.

Braga de Macedo, J., Catela Nunes, L. and F. Covas (2004a) "Moving the Escudo into the Euro" in chapter 8 of *Shaping the New Europe: Economic Policy Challenges of EU Enlargement*, edited by Michael Landersmann and Darius Rosati, Palgrave, forthcoming (an earlier version appeared as CEPR Discussion Paper, No. 2248, October 1999).

Braga de Macedo, J. and H. Reisen (2004b), "Float in Order to Fix: Lessons from Emerging Markets for New EU Member Countries", in *Monetary Strategies for Joining the Euro*, National Bank of Hungary, pp. 109-113.

Braga de Macedo, J. and M. Grandes (2005) "Argentina and Brazil Risk: a Eurocentric Tale", in Rolf Langhammer e Lucio Vinhas de Souza, editors *Monetary Policy and Macroeconomic Stabilization in Latin America*, Berlin: Springer, pp. 153-172.

Braga de Macedo, J., Braz, J., Brites Pereira, L. and L. C. Nunes (2006) Report to the Monetary Authority of Macau on "Macau's Currency Board", FEUNL Working Paper No. 492, Lisbon: Universidade Nova de Lisboa.

Braga de Macedo, J. and J. Oliveira Martins (2006) "Growth, Reform Indicators and Policy Complementaries, FEUNL Working Paper No. 484, Lisbon: Universidade Nova de Lisboa.

Braga de Macedo, J. & L. Brites Pereira, (2006) "The Credibility of Cape Verde's Currency Peg", FEUNL Working Paper No. 494, Lisbon: Universidade Nova de Lisboa.

Brites Pereira (2005a), "The Effectiveness of Intervention: Evidence from a Markov-Switching Analysis", Manuscript, Doctoral Thesis, Lisbon: Universidade Nova de Lisboa.

Brites Pereira (2005b), "Relieving Exchange Market Pressure", Manuscript, Doctoral Thesis, Lisbon: Universidade Nova de Lisboa.

Bubula, A. and I. Otker-Robe (2006) "Are Pegged and Intermediate Exchange Rate Regimes More Crisis Prone?, IMF Working Paper No. 03/223, Washington: International Monetary Fund.

Collier, P. (2006) "Angola: Options for Prosperity", Department of Economics, Oxford University, available at users.ox.ac.uk/~econpco/research/Africa.htm.

Demirguc-Kunt, A. and E. Detragiachhe (1997) "The Determinants of Banking Crises in Developing and Developed Countries", IMF Working Paper No. 106, Washington: International Monetary Fund, pp. 34-56.

Dooley, M. Folkerts-Landau, D. and P. Garber (2005) "Interest rates, Exchange Rates and International Adjustment", NBER Working Paper, No. 11771.

Dowling, M. and J. Zhuang (2000) "Causes of the 1997 Asian financial crisis: What More Can We Learn from an Early Warning System Model?", Department of Economics, Melbourne University, Australia Working Paper No. 123, pp. 54-76.

Engel, C., (1996), "The Forward Discount Anomaly and the Risk Premium: A Survey of Recent Evidence", *Journal of Empirical Finance*, No. 3, pp.123-192.

Engle, R. (1982) "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation", *Econometrica*, No. 50, pp. 987-1007.

Engle, R., Lilien, D. and R. Robins (1987) "Estimating Time Varying Risk Premia in the Term Structure: The ARCH-M Model", *Econometrica*, No. 55, pp. 391-407.

Eichengreen, B., Tobin, J. and C. Wyplosz (1995) "Two Cases for Sand in the Wheels of International Finance", *Economic Journal*, Vol. 105, pp. 162-172.

Eichengreen, B., Rose, A. K. and C. Wyplosz (1995) "Exchange Market Mayhem: The Antecedents and Aftermath of Speculative Attacks", *Economic Policy*, Vol. 21, pp. 249-312.

Eichengreen, B., Rose, A. K. and C. Wyplosz (1996) "Speculative Attacks on Pegged Exchange Rates: An Empirical Exploration with Special Reference to the European Monetary System", in Canzoneri, M.B., Ethier W.J. and V. Grilli (eds.) *The New Transatlantic Economy,* Cambridge University Press, Cambridge.

Feridun, M. (2007) "An Econometric Analysis of the Mexican Peso Crisis of 1994-1995", *Doğuş Üniversitesi Dergisi*, No. 8 (1), pp. 28-35.

Flood, R. and N. Marion (1998) "Perspectives on Recent Currency Crisis Literature", NBER Working Paper No. 6380, Cambridge, MA: National Bureau of Economic Research.

Fukuta, Y. and M. Saito (2002) "Forward Discount Puzzle and Liquidity Effects: Some Evidence from Exchange Rates among the United States, Canada, and Japan", *Journal of Money, Credit and Banking*, Vol.34, pp. 1014-1033.

Girton, L. and D. Roper (1977) "A Monetary Model of Exchange Market Pressure Applied to the Postwar Canadian Experience", *American Economic Review*, Vol. 67, No. 4, pp. 537-48.

Goldberg, L. and M. Klein (2006) "Establishing Credibility: Evolving Perceptions of the European Central Bank", paper presented at the NBER Summer Institute, July.

Inclán, C. and C. Tiao (1994) "Use of Cumulative Sums of Squares for Retrospective Detection of Changes of Variance", *Journal of the American Statistics Association*, Vol. 89, pp. 913-23.

Kaminsky, G.L. and C.M. Reinhart, (1999) "The Twin Crises: The Causes of Banking and Balance of Payments Problems", *American Economic Review*, Vol. 89 (June), pp. 473-500.

Kim, K. and P. Schmidt (1993) "Unit root tests with Conditional heteroskedasticity", *Journal of Econometrics* 59, 287-300.

Kose, M., Prasad, E., Wei, S. and K. Rogoff (2006) "Financial Globalization: A Reappraisal", IMF Working Paper No. 06/189, Washington: International Monetary Fund.

Kouri, P. and J. Braga de Macedo (1978) "Exchange Rates and the International Adjustment Process", Brookings Papers on Economic Activity.

Krugman, P. (1981) "Oil and the Dollar", in J. Bhandari and J. Putnam, *Interdependence under Flexible Exchange Rates*, Cambridge: MIT Schuler, K. (2004) *Tables of Modern Monetary History, available at http://users.erols.com/kurrency/afrca.htm*

Lanoie, P. and S. Lemarbre (1996) "Three Approaches to Predict the Timing and Quantity of LDC Debt Rescheduling", *Applied Economics*, No. 28 (2), pp. 241-246.

Li, J. Rajan, R.S and T. Willett (2006) Measuring Currency Crises using Exchange Market Pressure Indices: the Imprecision of Precision Weights, available at www.princeton.edu/~pcglobal/conferences/IPES/papers/chiu willett S1100 1.pdf

Spolander, M. (1999) "Measuring Exchange Rate Pressure and Central Bank Intervention", *Bank of Finland Studies*, Series E, No. 17.

Veyrune, R. (2007) "Fixed Exchange Rate and the Autonomy of Monetary Policy: The Franc Zone Case", IMF Working Paper, No. 07/34

Weber, R. (2005) "Cape Verde's Exchange Rate Policy and its Alternatives", BCL Working Paper No. 16, Banque Central du Luxembourg.

Weymark, D. N. (1995) "Estimating Exchange Market Pressure and the Degree of Exchange Market Intervention for Canada", *Journal of International Economics*, Vol. 39, pp. 273-295.

Weymark, D. N. (1998) "A General Approach to Measuring Exchange Market Pressure", *Oxford Economic Papers*, Vol. 50, pp. 106-121.

ANG – EMP Constituent Components

Date	EMP	∆e	$\Delta \mathbf{r}$	∆(i-i*)	Date	EMP	∆e	$\Delta \mathbf{r}$	∆(i-i*)	Date	EMP	∆e	$\Delta \mathbf{r}$	∆(i-i*)
1996 JAN	-24.844	0.000	37.994	0.230	1999 APR	-38.439	0.000	58.443	0.030	2002 JUL	-11.569	-11.569	1.680	-10.510
1996 FEB	-57.623	0.000	87.816	0.240	1999 MAY	121.620	102.962	-28.395	-0.040	2002 AUG	5.631	5.631	13.345	-16.730
1996 MAR	190.662	138.629	-79.215	-0.140	1999 JUN	-9.801	15.123	38.307	0.410	2002 SEP	-2.357	-2.357	-20.393	-3.620
1996 APR	20.368	22.314	2.883	-0.070	1999 JUL	22.567	27.110	3.493	-3.230	2002 OCT	21.353	21.353	0.368	16.470
1996 MAY	85.290	69.315	-10.550	13.000	1999 AUG	0.979	26.056	35.287	-2.670	2002 NOV	11.875	11.875	-2.183	-2.160
1996 JUN	52.617	47.000	14.587	21.900	1999 SEP	-32.434	40.890	111.325	-0.090	2002 DEC	49.677	49.677	-10.784	-2.070
1996 JUL	19.585	22.314	4.073	-0.070	1999 OCT	-7.974	-9.514	-0.365	1.870	2003 JAN	-3.268	-3.268	-67.996	-0.270
1996 AUG	-211.421	0.000	31.586	-274.370	1999 NOV	1.001	0.750	7.939	7.880	2003 FEB	-4.117	-4.117	15.307	-17.660
1996 SEP	30.281	0.000	-46.129	-0.110	1999 DEC	-3.524	4.209	4.044	-7.300	2003 MAR	6.278	6.278	-4.668	14.830
1996 OCT	-9.561	0.000	14.633	0.100	2000 JAN	11.271	5.407	-0.327	8.130	2003 APR	2.687	2.687	11.573	-13.430
1996 NOV	3.597	0.000	-5.434	0.030	2000 FEB	7.720	0.000	-11.794	-0.060	2003 MAY	-0.151	-0.151	-11.803	-8.420
1996 DEC	-28.335	0.000	42.993	-0.060	2000 MAR	-4.751	1.349	5.490	-3.580	2003 JUN	-25.482	-25.482	-2.220	4.250
1997 JAN	5.729	0.000	-8.696	0.010	2000 APR	14.931	11.685	-5.481	-0.520	2003 JUL	-10.865	-10.865	50.768	0.080
1997 FEB	-6.816	0.000	10.421	0.060	2000 MAY	29.424	24.233	-13.304	-5.130	2003 AUG	10.013	10.013	25.976	6.030
1997 MAR	27.743	0.000	-5.901	34.340	2000 JUN	19.169	18.427	-7.716	-6.240	2003 SEP	-19.647	-19.647	-6.717	0.180
1997 APR	0.478	0.000	-0.917	-0.180	2000 JUL	15.037	9.194	3.031	11.280	2003 OCT	5.531	5.531	19.956	-1.110
1997 MAY	8.958	0.000	-13.602	0.010	2000 AUG	-2.749	9.958	8.814	-9.940	2003 NOV	6.765	6.765	-10.828	3.020
1997 JUN	19.113	0.000	-29.002	0.040	2000 SEP	-50.139	4.860	95.199	11.010	2003 DEC	17.857	17.857	-8.333	-1.560
1997 JUL	3.424	26.236	34.729	0.060	2000 OCT	5.433	5.797	3.224	2.530	2004 JAN	17.880	17.880	-26.614	-5.880
1997 AUG	13.270	0.000	-20.164	0.000	2000 NOV	2.702	8.243	8.609	0.180	2004 FEB	-27.926	-27.926	-31.013	-2.830
1997 SEP	-15.705	0.000	23.865	0.000	2000 DEC	11.250	11.186	2.436	2.400	2004 MAR	5.825	5.825	38.765	-3.310
1997 OCT	-10.749	0.000	16.281	-0.050	2001 JAN	17.114	11.288	-1.336	7.120	2004 APR	9.306	9.306	-10.646	0.270
1997 NOV	4.331	0.000	-6.676	-0.090	2001 FEB	2.188	4.059	0.784	-1.950	2004 MAY	1.697	1.697	-11.914	-1.180
1997 DEC	21.921	0.000	-33.374	-0.060	2001 MAR	-8.344	-0.665	0.805	-10.290	2004 JUN	-12.716	-12.716	-2.531	-0.910
1998 JAN	4.292	0.000	-6.248	0.260	2001 APR	10.268	-0.103	-4.072	11.070	2004 JUL	7.000	7.000	20.118	0.110
1998 FEB	-1.217	0.000	1.849	0.000	2001 MAY	-3.587	0.870	-22.822	-28.030	2004 AUG	-27.743	-27.743	-6.288	0.820
1998 MAR	4.071	0.000	-6.229	-0.040	2001 JUN	10.521	3.159	19.241	28.820	2004 SEP	8.115	8.115	41.994	2.740
1998 APR	4.779	0.000	-4.622	2.500	2001 JUL	-0.915	3.301	3.851	-2.420	2004 OCT	-9.049	-9.049	-6.686	-0.100
1998 MAY	5.710	0.000	-8.687	-0.010	2001 AUG	10.532	6.517	1.310	7.020	2004 NOV	-24.442	-24.442	14.116	-4.200
1998 JUN	41.480	17.589	-36.314	-0.010	2001 SEP	4.469	7.456	0.199	-4.110	2004 DEC	0.151	0.151	31.851	0.940
1998 JUL	14.700	22.957	12.559	0.010	2001 OCT	14.687	9.236	-8.314	-0.030	2005 JAN	9.424	9.424	-0.451	-1.400
1998 AUG	26.276	16.508	-14.833	0.010	2001 NOV	20.786	7.511	-13.024	6.770	2005 FEB	-1.454	-1.454	-13.693	3.530
1998 SEP	30.750	23.180	-11.323	0.170	2001 DEC	29.104	11.532	-25.921	0.740	2005 MAR	-2.375	-2.375	5.657	-4.140
1998 OCT	27.474	5.043	-33.874	0.200	2002 JAN	0.127	5.865	7.400	-1.250	2005 APR	-7.516	-7.516	-0.622	-1.010
1998 NOV	-33.241	0.000	50.481	-0.030	2002 FEB	1.827	4.755	15.842	10.790	2005 MAY	-9.576	-9.576	11.935	-1.660
1998 DEC	20.061	13.762	-9.466	0.100	2002 MAR	-4.460	4.243	-7.152	-19.300	2005 JUN	-0.462	-0.462	14.446	4.620
1999 JAN	60.676	0.000	-91.937	0.250	2002 APR	10.477	4.870	0.983	9.000	2005 JUL	-9.981	-9.981	5.922	-0.450
1999 FEB	-0.120	0.000	0.172	-0.010	2002 MAY	7.968	5.255	2.170	5.960	2005 AUG	-6.148	-6.148	14.725	-0.030
1999 MAR	32.356	0.000	-49.177	-0.010	2002 JUN	3.991	5.916	1.680	-1.180	2005 SEP	-8.903	-8.903	9.311	-1.850

ANG – EMP Estimates & Crises

ANG – EMP Descriptive Statistics

ANG – EGARCH-M Estimation Results

Paramet	er	Es	stimate		Std. Error	t-Statis	tic		p-value	
μ		-0.	035880		0.005544	-6.4713	81		0.0000**	
D_ER_L	IB	1.:	266598		0.093339	13.5699	91		0.0000**	
D_R_SH	IFT	0.4	450566		0.017936	25.1203	39		0.0000**	
θ_{I}		0.0	004743		0.002137	2.21957	70		0.0264*	
θ_2		0.	003540		0.001580	2.24106	2.241065		0.0250*	
θ_{3}		-0.	280504		0.081915	-3.4243	54		0.0006**	
θ_4		-0.	153451		0.056601	-2.7111	25		0.0067**	
θ_5		-0.	001997		0.000353	-5.6639	22		0.0000**	
ξ_1		-0.	621861		0.096220	-6.4629	32		0.0000**	
ξ_2		-0.	171173		0.045946	-3.7255	57		0.0002**	
\mathcal{E}_{t-2}		0.	756265		0.090967	8.31362	28		0.0000**	
$\ln \sigma_t^2 =$	$\ln \sigma_t^2 = \text{DUMMY} + \lambda_0 + \lambda_1 \Delta dc_{t-3} + \lambda_2 \Delta oil_{t-4} + \alpha_1 \left \frac{\varepsilon_{t-1}}{\sigma_{t-1}} \right + \alpha_2 \ln \sigma_{t-1}^2 + \gamma_1 \frac{\varepsilon_{t-1}}{\sigma_{t-1}}$									
D_10_9	9	-1.	776190		0.435467	-4.0788	14		0.0000**	
λ ₀		-6.	140849		0.417547	-14.706	-14.70697		0.0000**	
λ_1		4.:	232692		1.351095	3.13278	36	0.0017**		
λ_2		-0.095852			0.020470	-4.6826	82		0.0000**	
$\ln \sigma^2_{t-1}$	1	-0.634700			0.097083	-6.5376	93		0.0000**	
α_1		0.3	320883		0.148388	2.16246	60		0.0306*	
γ_1		0.4	442317		0.090149	4.9065	8		0.0000**	
					Diagnostic	s				
		L-B Sta Res	andardised siduals		L-B Squared Residuals			ARCH-LM Statistic		
Lag		Q	p-value		Q ²	p-value	L	.M	p-value	
Lag4	2	.0716	0.150		1.8103	0.178	0.13	5892	0.2705	
Lag5	2	.0751	0.354		1.8394	0.399	0.00	0934	0.9926	
Lag6	2	.3794	0.497		1.9752	0.578	-0.02	24754	0.7787	
Lag7	2	.8713	0.580		2.0955	0.718	-0.05	55129	0.6503	
Lag8	7	.1675	0.208		3.3038	0.653	0.02	7496	0.8028	
Lag9	8	.8914	0.180		3.3038	0.770	0.01	9331	0.8729	
Lag10	1	1.338	0.125		3.3226	0.854	-0.02	26169	0.8375	
Lag11	1	1.346	0.183		3.6091	0.891	0.04	3421	0.7131	
Lag12	1	1.360	0.252		4.3461	0.887	0.06	6988	0.5932	
Lag13	1	1.773	0.301		5.2516	0.874	-0.15	56820	0.0759	
Lag14	1	3.228	0.279		7.2139	0.782	-0.14	43736	0.1594	
Lag15	1	3.336	0.345		7.9415	0.790	-0.02	25106	0.8390	
		No. of O	bservations		Log-Lik	elihood			SIC	
1		117			78.9	6751		-0.6	698048	

 $EMP_{t} = \mu \ln \sigma^{2} + \text{Dummies} + \theta_{I} \varDelta dc_{t-1} + \theta_{2} \varDelta dc_{t-8} + \theta_{3}q_{t-4} + \theta_{4}q_{t-7} + \theta_{5} trend + \xi_{I} EMP_{t-2} + \xi_{2} EMP_{t-3} + \varepsilon_{t} + \xi_{3}\varepsilon_{t-2}$

Variables	
	Bilateral AOA/USD exchange rate.
\boldsymbol{e}_t	Source: IMF – International Financial Statistics
$\Delta \boldsymbol{e}_t$	Depreciation rate of AOA vis-à-vis the USD (log).
٨٣	Change in ANG's international reserves (log).
ΔI_t	Source: IMF – International Financial Statistics.
i	ANG 3-Month Deposit Rate (%).
It.	Source: IMF – International Financial Statistics.
	USA 3-Month CDs (secondary market), an average of dealer bid rates on
<i>i</i> _t *	nationally traded certificates of deposit (%).
	Source: US Federal Reserve.
$\Delta(i_t - i_t^*)$	Change in interest rate differential (%).
n.	ANG Consumer Price Index.
Pt	Source: IMF – International Financial Statistics.
Δp_t	$\Delta \boldsymbol{p}_t = (\boldsymbol{p}_t - \boldsymbol{p}_{t-1})/\boldsymbol{p}_{t-1}$
	US Consumer Price Index.
$\boldsymbol{\rho}_t^*$	Source: Bureau of Labour Statistics - All Urban Consumers - (CPI-U) U.S. city
	average. All items 1982-84=100.
Δp_t^*	$\Delta p_{t}^{*} = (p_{t}^{*} - p_{t-1}^{*})/p_{t-1}^{*}$
q_t	Real exchange rate depreciation = $\Delta e - \Delta p_t + \Delta p_t^*$
dc.	Domestic credit growth rate.
	Source: IMF – International Financial Statistics.
Δdc_t	$\Delta dc_t = (dc_t - dc_{t-1})/dc_{t-1}$
	Crude Oil (Petroleum), Simple Average Of Three Spot Prices; Dated Brent, West
oil t	Tx Intermediate, & The Dubai Fateh, USD per Barrel – World.
	Source: Wood Mackenzie.
Δoil_t	$\Delta oil_t = (oil_t - oil_{t-1})/oil_{t-1}$
D_10_99	Dummy variable that takes on value one for all $t \ge 1999:10$ and zero otherwise.
ER_LIB	Dummy variable that takes on value one for all t = 1999:05 and zero otherwise.
D ER SHIFT	Dummy variable that takes on value one for all t = 2002:12 and zero otherwise.

ANG – Data Description²⁷

	Unit Root Test: MacKinnon Critical Values								
	Significance Level	No Intercept or Trend	Intercept	Intercept and Trend					
-	1%	-2.5830	-3.4861	-4.0373					
	5%	-1.9426	-2.8857	-3.4478					
	10%	-1.6171	-2.5795	-3.1488					

²⁷ The data used in the analysis are monthly and the sample period runs from 1996:01 until 2005:09. Where appropriate, Δ denotes percentage changes between two consecutive months, which are calculated using the exact formula or log difference approximation (excepting interest rate data).

Series	Level	Test Specification	First Difference	Test Specification						
p_t	-1.219924	Intercept & Trend	-4.870490**	Intercept & Trend						
\boldsymbol{p}_t^{\star}	-0.382614	Intercept & Trend	-4.732785**	No Intercept or Trend						
\boldsymbol{e}_t	-2.456632	Intercept & Trend	-8.137548**	No Intercept or Trend						
$i_t - i_t^*$	-3.757466**	Intercept & Trend	-10.97336**	No Intercept or Trend						
r_t	-0.731256	Intercept & Trend	-11.03994**	No Intercept or Trend						
dc_t	-2.032350	Intercept & Trend	-11.61337**	No Intercept or Trend						
oil _t	-0.252769	Intercept & Trend	-10.25041**	No Intercept or Trend						

ANG – Phillips-Perron Test Statistic

Notes: The Phillips-Perron procedure tests the null hypothesis of a unit root. All tests were conducted using four lags. A double (single) asterisk indicates that the test statistic is significant at the 1% (5%) level.

22

CV – EMP Constituent Components

CV – EMP Estimates & Crises

Date	EMP	∆e	Δr	∆(i-i *)	Date	EMP	∆e	Δr	∆(i-i*)	Date	EMP	∆e	Δr	∆(i-i*)
1996 JAN	1.750	0.085	-51.300	0.000	1999 APR	-2.169	0.000	34.695	-0.170	2002 JUL	-0.384	0.000	0.485	-0.060
1996 FEB	1.040	0.216	-25.378	0.000	1999 MAY	1.708	0.000	-35.614	0.090	2002 AUG	-0.030	0.000	4.716	0.020
1996 MAR	2.634	1.201	-42.249	0.010	1999 JUN	0.042	0.000	2.497	0.020	2002 SEP	0.131	0.000	-2.139	0.010
1996 APR	0.692	0.929	5.415	-0.010	1999 JUL	-2.575	0.000	3.769	-0.400	2002 OCT	-1.700	0.000	5.134	-0.250
1996 MAY	-0.570	-0.219	12.706	0.010	1999 AUG	-0.617	0.000	20.897	0.010	2002 NOV	0.167	0.000	-3.253	0.010
1996 JUN	1.106	1.183	2.367	0.000	1999 SEP	0.193	0.000	-5.929	0.000	2002 DEC	-0.926	0.000	17.191	-0.060
1996 JUL	1.097	0.123	-28.094	0.010	1999 OCT	0.890	0.000	-27.413	0.000	2003 JAN	-2.809	0.000	1.519	-0.450
1996 AUG	0.526	0.653	5.792	0.010	1999 NOV	-0.215	0.000	4.745	-0.010	2003 FEB	0.324	0.000	-9.982	0.000
1996 SEP	-1.602	-0.902	23.454	0.010	1999 DEC	-5.312	0.000	163.606	0.000	2003 MAR	-0.970	0.000	12.865	-0.090
1996 OCT	0.732	0.313	-9.154	0.020	2000 JAN	0.091	0.000	-27.361	-0.130	2003 APR	-4.834	0.000	1.568	-0.780
1996 NOV	0.107	-0.177	-6.853	0.010	2000 FEB	0.251	0.000	-7.718	0.000	2003 MAY	-0.646	0.000	1.009	-0.100
1996 DEC	-1.498	1.173	84.154	0.010	2000 MAR	0.213	0.000	-6.574	0.000	2003 JUN	-0.581	0.000	-0.978	-0.100
1997 JAN	3.438	-0.080	-8.233	0.530	2000 APR	0.518	0.000	-19.742	-0.020	2003 JUL	-0.590	0.000	-2.595	-0.110
1997 FEB	-0.700	-0.983	0.702	0.050	2000 MAY	0.378	0.000	-11.649	0.000	2003 AUG	0.095	0.000	-2.912	0.000
1997 MAR	0.487	0.309	7.743	0.070	2000 JUN	0.384	0.000	-11.825	0.000	2003 SEP	-0.330	0.000	17.728	0.040
1997 APR	-4.615	-4.776	2.582	0.040	2000 JUL	-0.017	0.000	-7.026	-0.040	2003 OCT	-0.367	0.000	-13.239	-0.130
1997 MAY	4.862	4.688	0.303	0.030	2000 AUG	-1.140	0.000	35.095	0.000	2003 NOV	-0.086	0.000	6.423	0.020
1997 JUN	0.134	-0.128	-4.300	0.020	2000 SEP	0.625	0.000	-21.132	-0.010	2003 DEC	-0.271	0.000	4.555	-0.020
1997 JUL	0.740	0.392	-5.065	0.030	2000 OCT	-0.017	0.000	2.419	0.010	2004 JAN	-1.424	0.000	0.405	-0.230
1997 AUG	1.386	-0.941	-64.110	0.040	2000 NOV	-0.428	0.000	11.300	-0.010	2004 FEB	-0.095	0.000	4.826	0.010
1997 SEP	0.547	0.378	-5.204	0.000	2000 DEC	-0.689	0.000	23.123	0.010	2004 MAR	0.034	0.000	-4.822	-0.020
1997 OCT	-2.390	0.006	13.349	-0.320	2001 JAN	-0.489	0.000	13.167	-0.010	2004 APR	-0.522	0.000	6.638	-0.050
1997 NOV	0.432	0.214	-6.727	0.000	2001 FEB	0.152	0.000	-2.787	0.010	2004 MAY	0.543	0.000	2.150	0.100
1997 DEC	-0.371	0.714	33.429	0.000	2001 MAR	0.509	0.000	-13.802	0.010	2004 JUN	-0.188	0.000	0.113	-0.030
1998 JAN	2.071	0.878	-4.631	0.170	2001 APR	1.308	0.000	-0.627	0.210	2004 JUL	-0.206	0.000	2.569	-0.020
1998 FEB	-0.872	-1.076	-4.380	0.010	2001 MAY	-0.034	0.000	-0.857	-0.010	2004 AUG	-0.283	0.000	8.713	0.000
1998 MAR	-0.072	-0.124	0.314	0.010	2001 JUN	0.281	0.000	-2.989	0.030	2004 SEP	-0.079	0.000	4.335	0.010
1998 APR	0.003	0.327	-3.247	-0.070	2001 JUL	2.368	0.000	4.511	0.410	2004 OCT	0.831	0.000	-2.227	0.124
1998 MAY	4.755	4.863	5.231	0.010	2001 AUG	0.029	0.000	2.871	0.020	2004 NOV	0.164	0.000	-3.171	0.010
1998 JUN	-0.684	-0.575	3.335	0.000	2001 SEP	-0.025	0.000	4.532	0.020	2004 DEC	-0.852	0.000	18.672	-0.040
1998 JUL	0.568	0.522	0.454	0.010	2001 OCT	-0.124	0.000	7.594	0.020	2005 JAN	0.029	0.000	-0.883	0.000
1998 AUG	0.828	-0.688	-44.798	0.010	2001 NOV	0.181	0.000	0.078	0.030	2005 FEB	0.064	0.000	1.797	0.020
1998 SEP	-0.187	0.330	17.805	0.010	2001 DEC	-0.978	0.000	35.783	0.030	2005 MAR	-1.274	0.000	4.306	-0.185
1998 OCT	-0.380	-0.223	6.750	0.010	2002 JAN	-0.143	0.000	6.306	0.010	2005 APR	-2.145	0.000	5.163	-0.323
1998 NOV	-0.220	-0.446	-5.055	0.010	2002 FEB	-0.521	0.000	17.924	0.010	2005 MAY	1.299	0.000	9.111	0.260
1998 DEC	2.144	0.262	-56.080	0.010	2002 MAR	-0.303	0.000	11.225	0.010	2005 JUN	-0.032	0.000	-0.908	-0.010
1999 JAN	-3.567	-0.214	84.379	-0.100	2002 APR	-0.137	0.000	-1.451	-0.030	2005 JUL	0.189	0.000	-3.940	0.010
1999 FEB	2.639	-0.124	-77.547	0.040	2002 MAY	-0.004	0.000	0.114	0.000	2005 AUG	-1.270	0.000	3.690	-0.188
1999 MAR	0.398	0.000	-4.692	0.040	2002 JUN	-0.003	0.000	0.087	0.000	2005 SEP	1.089	0.000	-3.310	0.160

CV – EMP Descriptive Statistics

CV – EGARCH-M Estimation Results

Parameter	Estimate	Std. Error	t-Statistic	p-value				
μ	-0.002277	0.000386	-5.897669	0.0000**				
θ_0	-0.024604	0.004236	-5.809010	0.0000**				
θ_1	0.058132	0.019334	3.006672	0.0026**				
θ_2	-0.189549	0.040841	-4.641149	0.0000**				
ξ_1	-0.138642	0.054641	-2.537328	0.0112*				
ξ_2	0.166011	0.043016	3.859268	0.0001**				
$\ln \sigma_t^2 = \lambda_0 + \lambda_1 \varDelta rer_{t-1} + \lambda_2 \varDelta dc_{t-3} + \lambda_3 \varDelta r_{t-4} + \lambda_4 \varDelta r_{t-8} + \lambda_5 trend + \alpha_1 \left \frac{\varepsilon_{t-1}}{\sigma_{t-1}} \right + \gamma_1 \frac{\varepsilon_{t-1}}{\sigma_{t-1}}$								

 $EMP_{t} = \mu \ln \sigma^{2} + \theta_{0} + \theta_{1} \varDelta dc_{t-4} + \theta_{2} q_{t-3} + \varepsilon_{t} + \xi_{1} \varepsilon_{t-1} + \xi_{2} \varepsilon_{t-3}$

				$ \mathbf{v}_{t-1} \mathbf{v}_{t-1} $
λ_0	-7.968517	0.288702	-27.60115	0.0000**
λ_1	-19.57058	7.308292	-2.677860	0.0074**
λ_2	-25.91903	2.776526	-9.335060	0.0000**
λ_3	2.198588	0.329649	6.669473	0.0000**
λ_4	3.858875	0.411063	9.387552	0.0000**
λ_5	-0.027584	0.004062	-6.789853	0.0000**
α_1	0.591598	0.200617	2.948892	0.0032**
γ_1	-0.705408	0.107218	-6.579214	0.0000**
		Diagnostics		

	L-B Stan Resi	dardised duals	L-B Square	d Residuals	ARCH-LM Statistic		
Lag	Q	p-value	Q ²	p-value	LM	p-value	
Lag3	1.6805 0.195		3.2580	0.071	0.023585	0.8099	
Lag4	1.8140	0.404	3.9167	0.141	-0.062074	0.5390	
Lag5	1.8140	0.612	3.9216	0.270	0.041375	0.6311	
Lag6	3.7235	0.445	3.9216	0.417	-0.080680	0.4229	
Lag7	5.0334	0.412	3.9491	0.557	0.031201	0.8111	
Lag8	5.0407	0.539	4.1989	0.650	-0.071455	0.6091	
Lag9	5.5784	0.590	4.2108	0.755	-0.067852	0.4711	
Lag10	6.0199	0.645	5.2979	0.725	-0.128773	0.1187	
Lag11	7.1475	0.622	5.6028	0.779	-0.046155	0.7623	
Lag12	7.8967	0.639	5.9442	0.820	-0.043482	0.6835	
Lag13	7.9255	0.720	6.1949	0.860	-0.075333	0.4101	
Lag14	7.9256	0.791	6.4396	0.892	-0.061972	0.4485	
	No. of Ob	servations	Log-Lik	elihood	SIC		
	1	17	350.	2359	-5.8238		

Variables	
	Bilateral CVE/EUR exchange rate.
e_t	Source: Banco de Cabo Verde (BCV).
$\Delta \boldsymbol{e}_t$	Depreciation rate of CVE vis-à-vis the EUR (log).
٨٣	Change in CV's international reserves (log)
ΔI_t	Source: BCV.
;	CV 3-Month Deposit Rate (%).
I _t	Source: BCV.
; *	Eurozone 3-Month Deposit Rate (%).
I _t	Source: European Central Bank.
$\Delta(I_t - i_t^*)$	Change in interest rate differential (%).
n	CV Consumer Price Index.
P_t	Source: BCV.
Δp_t	$\Delta p_t = (p_t - p_{t-1})/p_{t-1}$
n *	German Consumer Price Index
$\boldsymbol{\rho}_t$	Source: Deutsche Bundesbank.
Δp_t^*	$\Delta p_t^* = (p_t^* - p_{t-1}^*)/p_{t-1}^*$
q_t	Real exchange rate depreciation = $\Delta e - \Delta p_t + \Delta p_t^*$
da	Domestic credit.
uc_t	Source: BCV.
Δdc_t	$\Delta dc_t = (dc_t - dc_{t-1})/dc_{t-1}$
D 1 99	Dummy variable that takes on value one for all $t \ge 1999:01$ and zero otherwise.

CV – Data Description

CV – Phillips-Perron Test Statistic

Series	Level	Test Specification	First Difference	Test Specification
p_t	-3.087410	Intercept & Trend	-10.75042**	No Intercept or Trend
\boldsymbol{p}_t^*	-2.383996	Intercept & Trend	-11.04016**	No Intercept or Trend
et	-3.261669***	Intercept & Trend	-15.70297**	No Intercept or Trend
$i_t - i_t^*$	-1.747065	Intercept & Trend	-10.40285**	No Intercept or Trend
r_t	-1.239519	Intercept & Trend	-12.31291**	No Intercept or Trend
dc_t	-2.899659	Intercept & Trend	-9.234167**	No Intercept or Trend

GB – EMP Constituent Components

GB – EMP Estimates & Crises

Date	EMP	∆e	Δr	∆(i-i*)	Date	EMP	∆e	Δr	∆(i-i *)	Date	EMP	∆e	Δr	∆(i-i *)
1996 JAN	0.172	0.000	-7.848	0.000	1999 APR	0.664	0.000	-10.998	0.040	2002 JUL	0.114	0.000	-0.359	0.010
1996 FEB	-0.083	-0.171	-4.029	0.000	1999 MAY	1.003	0.000	-2.322	0.090	2002 AUG	0.214	0.000	-0.095	0.020
1996 MAR	0.632	0.477	-2.247	0.010	1999 JUN	-0.193	0.000	18.491	0.020	2002 SEP	0.419	0.000	-14.328	0.010
1996 APR	0.119	0.163	-2.824	-0.010	1999 JUL	-0.456	0.000	30.493	0.020	2002 OCT	-2.777	0.000	5.980	-0.250
1996 MAY	0.735	0.665	1.623	0.010	1999 AUG	0.203	0.000	-4.439	0.010	2002 NOV	0.174	0.000	-3.136	0.010
1996 JUN	-0.071	0.668	33.787	0.000	1999 SEP	-0.353	0.000	16.127	0.000	2002 DEC	-0.825	0.000	8.681	-0.060
1996 JUL	0.179	-0.237	-14.165	0.010	1999 OCT	0.080	0.000	-3.639	0.000	2003 JAN	-1.257	0.000	4.251	-0.110
1996 AUG	-0.193	-0.561	-11.985	0.010	1999 NOV	0.162	0.000	-12.245	-0.010	2003 FEB	-0.087	0.000	3.997	0.000
1996 SEP	0.533	0.215	-9.670	0.010	1999 DEC	0.345	0.000	-15.755	0.000	2003 MAR	-1.021	0.000	3.142	-0.090
1996 OCT	0.622	-0.031	-20.152	0.020	2000 JAN	0.126	0.000	-5.746	0.000	2003 APR	-1.091	0.000	1.492	-0.100
1996 NOV	0.574	0.329	-6.373	0.010	2000 FEB	-0.323	0.000	14.765	0.000	2003 MAY	-1.398	0.000	15.517	-0.100
1996 DEC	0.555	0.175	-12.537	0.010	2000 MAR	0.121	0.000	-5.510	0.000	2003 JUN	-1.159	0.000	4.598	-0.100
1997 JAN	0.275	-0.287	-11.184	0.030	2000 APR	-0.106	0.000	4.861	0.000	2003 JUL	-1.272	0.000	4.944	-0.110
1997 FEB	3.030	2.742	11.010	0.050	2000 MAY	-0.517	0.000	23.640	0.000	2003 AUG	0.079	0.000	-3.622	0.000
1997 MAR	0.074	0.110	35.467	0.070	2000 JUN	-0.628	0.000	28.712	0.000	2003 SEP	0.368	0.000	2.531	0.040
1997 APR	0.512	0.297	9.525	0.040	2000 JUL	-0.066	0.000	-1.823	-0.010	2003 OCT	-0.193	0.000	-0.873	-0.020
1997 MAY	-2.899	-3.026	8.697	0.030	2000 AUG	-0.062	0.000	2.822	0.000	2003 NOV	0.160	0.000	2.377	0.020
1997 JUN	0.043	0.399	25.935	0.020	2000 SEP	-0.061	0.000	-2.055	-0.010	2003 DEC	3.118	0.000	-152.195	-0.020
1997 JUL	0.438	0.867	34.100	0.030	2000 OCT	0.356	0.000	-11.412	0.010	2004 JAN	-0.267	0.000	7.352	-0.010
1997 AUG	-0.079	-0.337	7.564	0.040	2000 NOV	0.031	0.000	-6.263	-0.010	2004 FEB	0.160	0.000	-2.488	0.010
1997 SEP	-0.570	-0.575	-0.207	0.000	2000 DEC	-0.370	0.000	21.743	0.010	2004 MAR	-0.959	0.000	34.151	-0.020
1997 OCT	0.120	-0.014	-1.277	0.010	2001 JAN	0.114	0.000	-10.049	-0.010	2004 APR	-0.320	0.000	-9.580	-0.050
1997 NOV	0.277	0.493	9.855	0.000	2001 FEB	0.301	0.000	-8.920	0.010	2004 MAY	1.267	0.000	-9.520	0.100
1997 DEC	0.427	-0.060	-22.231	0.000	2001 MAR	0.137	0.000	-1.423	0.010	2004 JUN	-0.819	0.000	22.935	-0.030
1998 JAN	-0.325	-0.120	14.221	0.010	2001 APR	0.189	0.000	-3.783	0.010	2004 JUL	-0.454	0.000	11.067	-0.020
1998 FEB	-0.038	0.114	11.787	0.010	2001 MAY	-0.387	0.000	12.841	-0.010	2004 AUG	-0.485	0.000	22.155	0.000
1998 MAR	0.454	0.433	3.882	0.010	2001 JUN	0.179	0.000	6.340	0.030	2004 SEP	0.202	0.000	-4.385	0.010
1998 APR	-0.462	-0.087	21.944	0.010	2001 JUL	-0.122	0.000	10.418	0.010	2004 OCT	-0.123	0.000	0.798	-0.010
1998 MAY	-0.597	-0.553	6.813	0.010	2001 AUG	0.215	0.000	-0.142	0.020	2004 NOV	0.092	0.000	0.631	0.010
1998 JUN	0.318	0.262	-2.575	0.000	2001 SEP	0.342	0.000	-5.975	0.020	2004 DEC	-0.570	0.000	6.705	-0.040
1998 JUL	0.401	0.004	-13.295	0.010	2001 OCT	0.379	0.000	-7.649	0.020	2005 JAN	0.322	0.000	-14.729	0.000
1998 AUG	0.089	-0.232	-9.853	0.010	2001 NOV	0.270	0.000	2.159	0.030	2005 FEB	0.365	0.000	-7.009	0.020
1998 SEP	0.000	-0.211	-4.788	0.010	2001 DEC	0.094	0.000	10.220	0.030	2005 MAR	-0.635	0.000	-0.017	-0.060
1998 OCT	0.420	0.160	-7.051	0.010	2002 JAN	0.055	0.000	2.305	0.010	2005 APR	0.061	0.000	-7.612	-0.010
1998 NOV	0.143	-0.194	-10.587	0.010	2002 FEB	0.232	0.000	-5.746	0.010	2005 MAY	-1.124	0.000	56.216	0.010
1998 DEC	0.036	-0.170	-4.564	0.010	2002 MAR	0.181	0.000	-3.455	0.010	2005 JUN	-0.137	0.000	1.402	-0.010
1999 JAN	-0.148	-0.389	-1.351	0.020	2002 APR	0.012	0.000	4.2/1	0.010	2005 JUL	-0.018	0.000	5.655	0.010
1999 FEB	0.619	0.000	-8.949	0.040	2002 MAY	-0.495	0.000	22.621	0.000	2005 AUG	0.106	0.000	-4.822	0.000
1999 MAR	0.571	0.000	-6./64	0.040	2002 JUN	-0.489	0.000	22.347	0.000	2005 SEP	0.338	0.000	-10.620	0.010

GB – EMP Descriptive Statistics

Series: EMP_	EURO
Sample 1996	M01 2005M09
Observations	117
Mean	-0.011675
Median	0.089224
Maximum	3.118420
Minimum	-2.898738
Std. Dev.	0.726165
Skewness	0.103766
Kurtosis	10.38594
Jarque-Bera	266.1512
Probability	0.000000

GB – EGARCH-M Estimation Results

Paramet	ier Es	stimate	Std. Error	t-Stati	stic		p-value	
μ	-0.	.000536	8.62E-06		-62.25	5163		0.0000**
D_5_97	7 -0.	.006708	0.000206		-32.63	759		0.0000**
θ_1	0.	006067	0.001566		3.874	420		0.0001**
θ_2	-0.	.046472	0.002107		-22.05	940		0.0000**
	$\ln \sigma_t^2 = \lambda_0$	$_{0} + \lambda_{I} \Delta dc_{t-3}$	$+\lambda_2 \varDelta r_{t-2} + \alpha$	$\frac{\varepsilon_{t-1}}{\sigma_{t-1}}$	$\frac{-1}{-1} + \alpha_2 \ln \alpha$	$\sigma_{t-1}^2 + \alpha_3 l$	$n\sigma_t^2$	2-2
λ_0	-1;	3.58991	0.005822		-2334	.153		0.0000**
λ_1	-2	.856574	0.609767		-4.684	695		0.0000**
λ_2	2.	130448	0.320162		6.654	273		0.0000**
α_1	1.	698640	0.055331		30.69	965		0.0000**
α_2	-0.	.355731	0.001158	-307.1	049	0.0000**		
α_3	0.	4.36E-05		4177.	698		0.0000**	
			Diagnostic	cs				
	L-Bo Sta Resi	ndardised duals	L-B Squared Residuals			ARCH-LM Statistic		
Lag	Q	p-value	Q ²	F	o-value	LM		p-value
Lag1	1.4940	0.222	0.6428		0.423	-0.09376	68	0.2277
Lag2	1.4985	0.473	1.9863		0.370	0.119513		0.4922
Lag3	1.5744	0.665	2.4040		0.493	0.07435	59	0.4551
Lag4	3.8546	0.426	2.9722		0.562	-0.05054	17	0.5907
Lag5	4.7447	0.448	2.9826		0.703	-0.00085	52	0.9926
Lag6	6.9611	0.324	3.2093		0.782	0.06681	6	0.4312
Lag7	7.0170	0.427	3.2186		0.864	0.05321	9	0.5359
Lag8	7.5428	0.479	3.3680		0.909	0.05748	32	0.4945
Lag9	7.5534	0.580	3.3731		0.948	0.00904	6	0.9030
Lag10	9.5067	0.485	5.9059		0.823	-0.17739	90	0.0272
Lag11	11.055	0.439	5.9071		0.879	-0.04006	61	0.5147
Lag12	11.245	0.508	7.2679		0.839	0.14019	6	0.4831
	No. of Ob	servations	Log-Lik	eliho	bod			SIC
	1	426.	}	-7.3980				

$EMP_{t} = \mu \ln \sigma^{2} + DUMMY + \theta_{1} \varDelta dc_{t-4} + \theta_{2} q_{t-7} + \varepsilon_{t}$

Variables	
	Bilateral GBW/EUR exchange rate.
e_t	Source: Calculated using data from http://www.oanda.com/convert/fxhistory
$\Delta \boldsymbol{e}_t$	Depreciation rate of GWB vis-à-vis the EUR (log).
٨٣	Change in GB's international reserves (log).
ΔI_t	Source: IMF – International Financial Statistics.
;	GB 3-Month Deposit Rate (%).
¹ t	Source: IMF – International Financial Statistics.
;*	Eurozone 3-Month Deposit Rate (%).
I _t	Source: European Central Bank.
$\Delta(i_t - i_t^*)$	Change in interest rate differential (%).
n	GB Consumer Price Index.
$\boldsymbol{\rho}_t$	Source: IMF – International Financial Statistics.
Δp_t	$\Delta \boldsymbol{\rho}_t = (\boldsymbol{\rho}_t - \boldsymbol{\rho}_{t-1})/\boldsymbol{\rho}_{t-1}$
n*	German Consumer Price Index.
P_t	Source: Deutsche Bundesbank.
$\Delta \rho_t^{\star}$	$\Delta p_t^* = (p_t^* - p_{t-1}^*)/p_{t-1}$
q_t	Real exchange rate depreciation = $\Delta e - \Delta p_t + \Delta p_t^*$
da	Domestic credit.
	Source: IMF – International Financial Statistics.
Δdc_t	$\Delta dc_t = (dc_t - dc_{t-1})/dc_{t-1}$
D 5 97	Dummy variable that takes on value one for all $t \ge 1997:05$ and zero otherwise.

GB – Data Description

GB – Phillips-Perron Test Statistic

Series	Level	Test Specification	First Difference	Test Specification
p_t	-3.656467**	Intercept	-10.50532**	No Intercept or Trend
p_t^*	-2.383996	Intercept & Trend	-11.04016**	No Intercept or Trend
\boldsymbol{e}_t	-4.275929**	Intercept	-13.06109**	No Intercept or Trend
$i_t - i_t^*$	-1.32507	Intercept & Trend	-8.621472**	No Intercept or Trend
r_t	-3.129516	Intercept & Trend	-10.57881**	No Intercept or Trend
dc_t	-1.418726	Intercept & Trend	-13.62803**	No Intercept or Trend

MOZ – EMP and Changes in Exchange Rate (%)

MOZ – EMP	Estimates	&	Crises
-----------	-----------	---	--------

Date	EMP	∆e	Δr	∆(i-i*)	Date	EMP	∆e	Δr	∆(i-i*)	Date	EMP	∆e	Δr	∆(i-i*)
1996 JAN	-19.846	0.568	12.988	-22.070	1999 APR	1.531	-0.113	-3.724	0.030	2002 JUL	-1.093	0.897	4.042	-0.340
1996 FEB	3.914	0.945	-6.133	0.440	1999 MAY	0.926	0.897	-0.126	-0.040	2002 AUG	0.703	0.443	-0.719	-0.080
1996 MAR	-3.804	0.397	9.879	0.160	1999 JUN	-2.615	0.080	5.858	-0.210	2002 SEP	1.186	0.120	-2.597	-0.100
1996 APR	3.168	1.129	-4.170	0.330	1999 JUL	0.143	1.495	2.932	-0.110	2002 OCT	1.364	0.195	-2.482	0.130
1996 MAY	-0.446	0.214	-0.480	-1.300	1999 AUG	0.295	0.431	0.052	-0.170	2002 NOV	-5.438	-0.364	10.655	-0.640
1996 JUN	-0.280	1.131	11.511	5.400	1999 SEP	1.563	1.112	-1.173	-0.090	2002 DEC	-1.796	0.076	4.200	-0.060
1996 JUL	2.858	0.613	-5.255	-0.070	1999 OCT	1.359	0.517	-2.898	-0.630	2003 JAN	-3.827	-0.247	5.941	-1.480
1996 AUG	-4.674	1.017	13.249	0.130	1999 NOV	2.572	1.640	-1.937	0.130	2003 FEB	1.516	0.536	-3.381	-0.740
1996 SEP	-0.724	-0.720	0.145	0.090	1999 DEC	-0.437	0.641	2.397	-0.050	2003 MAR	-0.776	-0.296	-0.263	-0.890
1996 OCT	-0.447	-0.035	1.097	0.100	2000 JAN	2.981	2.260	-0.320	0.870	2003 APR	-1.044	-0.318	1.526	-0.090
1996 NOV	-10.470	-1.245	21.200	0.030	2000 FEB	2.409	2.016	-0.995	-0.060	2003 MAY	3.512	0.127	-7.990	-0.150
1996 DEC	-0.806	0.361	2.585	-0.060	2000 MAR	2.722	4.707	4.920	0.240	2003 JUN	-1.793	-0.411	2.724	-0.290
1997 JAN	11.251	2.079	-0.788	13.210	2000 APR	2.250	3.312	2.666	0.150	2003 JUL	0.455	0.565	0.345	0.060
1997 FEB	-2.162	-1.047	2.802	0.160	2000 MAY	2.316	1.583	-1.742	-0.040	2003 AUG	-1.740	-0.440	2.520	-0.300
1997 MAR	0.237	-0.017	-0.830	-0.160	2000 JUN	-0.068	0.163	0.547	0.010	2003 SEP	-0.555	0.021	0.172	-0.750
1997 APR	-0.618	1.004	3.444	-0.180	2000 JUL	1.644	0.619	-2.581	-0.150	2003 OCT	-3.732	0.025	7.880	-0.480
1997 MAY	3.643	-1.065	-2.047	5.710	2000 AUG	1.526	0.712	-1.346	0.340	2003 NOV	0.558	-0.667	-3.315	-0.330
1997 JUN	-12.368	-0.795	21.233	-3.460	2000 SEP	1.386	0.707	-1.068	0.320	2003 DEC	-3.181	1.114	9.389	-0.300
1997 JUL	2.117	1.593	-1.110	0.060	2000 OCT	5.565	4.378	-2.155	0.370	2004 JAN	-1.132	-0.248	2.794	0.500
1997 AUG	-15.755	-0.060	1.554	-22.470	2000 NOV	1.788	2.434	1.847	0.240	2004 FEB	1.080	0.423	-1.689	-0.120
1997 SEP	0.909	0.723	-0.425	0.000	2000 DEC	-2.032	2.478	10.649	0.200	2004 MAR	-0.569	-0.641	-0.441	-0.180
1997 OCT	-2.415	-0.870	3.466	-0.050	2001 JAN	5.857	2.486	-2.824	3.200	2004 APR	-0.067	0.424	1.033	-0.060
1997 NOV	-2.167	0.173	0.124	-3.420	2001 FEB	4.818	3.682	-1.625	0.640	2004 MAY	-0.029	-1.774	-4.108	-0.070
1997 DEC	-6.138	-0.268	13.367	-0.060	2001 MAR	1.982	2.364	1.596	0.470	2004 JUN	-1.356	-1.833	-2.551	-0.950
1998 JAN	1.740	0.845	-1.653	0.260	2001 APR	5.624	5.026	-0.820	0.360	2004 JUL	-2.708	-1.531	2.990	0.190
1998 FEB	-0.403	-0.491	-3.252	-1.990	2001 MAY	6.489	4.867	-2.954	0.500	2004 AUG	-1.765	-1.009	1.487	-0.160
1998 MAR	-3.044	0.353	7.729	-0.040	2001 JUN	6.708	6.231	0.530	1.060	2004 SEP	-7.863	-4.729	6.496	-0.450
1998 APR	-0.128	-0.121	0.384	0.240	2001 JUL	-0.619	-0.664	0.173	0.180	2004 OCT	-4.860	-4.338	0.629	-0.370
1998 MAY	3.783	1.335	-3.408	1.440	2001 AUG	1.248	1.352	1.770	1.000	2004 NOV	-5.298	-3.717	3.302	-0.210
1998 JUN	-1.305	0.390	1.052	-1.850	2001 SEP	0.703	0.440	1.604	1.440	2004 DEC	-8.514	-4.320	8.819	-0.520
1998 JUL	1.860	0.843	-2.791	-0.300	2001 OCT	4.453	2.026	-3.694	1.220	2005 JAN	-0.093	-2.699	-5.562	0.270
1998 AUG	0.837	0.151	-1.082	0.320	2001 NOV	2.808	1.943	0.531	1.640	2005 FEB	0.170	0.817	0.903	-0.380
1998 SEP	-0.791	1.191	4.807	0.170	2001 DEC	-0.369	1.036	4.325	0.720	2005 MAR	2.866	2.192	-2.236	-0.450
1998 OCT	0.412	-0.265	-1.246	0.200	2002 JAN	-1.365	0.349	4.727	0.520	2005 APR	12.843	12.806	-1.021	-0.610
1998 NOV	1.512	1.965	0.993	-0.030	2002 FEB	0.655	-0.148	-1.441	0.260	2005 MAY	10.088	11.093	1.339	-0.630
1998 DEC	-5.651	0.690	14.693	0.100	2002 MAR	1.588	1.089	-1.189	-0.030	2005 JUN	1.509	2.025	0.906	-0.180
1999 JAN	1.616	0.000	-3.322	0.250	2002 APR	0.083	-0.180	0.226	0.540	2005 JUL	0.662	-0.043	-1.799	-0.120
1999 FEB	0.803	0.032	-1.783	-0.010	2002 MAY	0.885	0.308	-1.981	-0.430	2005 AUG	1.092	-0.179	-3.359	-0.290
1999 MAR	-4.066	0.548	10.566	-0.010	2002 JUN	-0.954	-0.523	-1.647	-1.720	2005 SEP	0.983	1.095	-0.004	-0.170

$EMP_t = \mu \ln \theta$	$\sigma^2 + \mathbf{I}$	Dummies	$+ \theta_1 \Delta dc_{t-6} + \theta_2$	$\Delta dc_{t-9} + \theta_3 q_{t-3} +$	$\theta_4 q_t$	$-8 + \xi_1 EMP_t$	$_{-1} + \xi_2 EM$	P_{t-2}	$+\xi_3 EMP_{t-4} + \varepsilon_t$	
Paramete	ər	Es	stimate	Std. Error		t-Stat	stic		p-value	
μ		-0.	001111	0.000408		-2.720	960		0.0065**	
D_AID_CC	NC	0.	095706	0.013277		7.208	212	0.0000**		
D_8_199	7	-0.	083265	0.020951		-3.974	368	0.0001**		
θ_{I}		0.	036008	0.006675		5.394	406		0.0000**	
θ_2		0.	032004	0.005957		5.372	645		0.0000**	
θ_3		-0.	237890	0.072678		-3.273	214		0.0011**	
$\theta_{_4}$		-0.	389466	0.080988		-4.808	910		0.0000**	
ξ_1		0.	171410	0.056766		3.019	601		0.0025**	
ξ_2		0.:	271044	0.067864		3.993	912		0.0001**	
ξ_3		0.:	247548	0.029615		8.358	759		0.0000**	
$\ln \sigma_t^2 = \text{Dum}$	imy	$+ \lambda_0 + \lambda$	$_{I}\Delta dc _{I-2} + \lambda_{2}\Delta$	$1dc_{t-3} + \lambda_3 \Delta dr_{t-3}$.1 + .	$\lambda_4 \Delta dr_{t-12} +$	λ_5 trend	+ α ₁	$\left \frac{\varepsilon_{t-1}}{\sigma_{t-1}}\right + \gamma_I \frac{\varepsilon_{t-1}}{\sigma_{t-1}}$	
D_8_97	,	-2.	421679	0.425431		-5.692	299		0.0000**	
λ_0		-7.	405693	0.366634		-20.19	912		0.0000**	
λ_1		-3.	307525	0.606509		-5.453	53378		0.0000**	
λ_2		-1.	272954	0.468581	-2.71		6614		0.0066**	
λ_3		11	.29571	3.171785		3.561	309		0.0004**	
λ_4	10).39159	1.984151		5.237297			0.0000**	
λ_5		0.	027186	0.004597		5.914	081		0.0000**	
α_1		0.5	230000	0.150110		1.532	214		0.1255	
γ_1		0.	662871	0.122989		5.389	698		0.0000**	
		-B Stan	dardised	Diagnostic	S					
		Resi	duals	L-B Square	d Re			CH-LM Statistic		
Lag		Q	p-value	Q		p-value	LM		p-value	
Lag4	3	.0904	0.079	0.7990		0.371	-0.0161	12	0.8938	
Lag5	3	.7874	0.151	0.8002		0.670	0.0027	94	0.9824	
Lag6	4	.1964	0.241	0.8612		0.835	-0.0091	89	0.9192	
Lag7	4	.2347	0.375	1.2024		0.878	0.0453	56	0.7130	
Lag8	4	.2788	0.510	1.2220		0.943	-0.0676	60	0.4516	
Lag9	4	.6136	0.594	2.4725		0.872	-0.1145	66	0.2387	
Lag10	4	.9034	0.672	2.5249		0.925	-0.0854	40	0.3958	
Lag11	4	.9066	0.768	2.7913		0.947	0.0242	75	0.7777	
Lag12	5	.2214	0.815	3.1857		0.956	-0.0904	.33	0.3921	
Lag13	5	.2710	0.872	4.3555		0.930	-0.0553	24	0.6045	
Lag14	5	.4720	0.906	4.3555		0.958	0.0032	71	0.9771	
Lag15	5	.5001	0.939	5.9249		0.920	0.2033	04	0.1424	
	N	o. of Ob	servations	Log-Lik	eliho	bod			SIC	
117		17	253.9	9199)	-4.034581				

MOZ – EGARCH-M Estimation Results

Variables	
	Bilateral MZM/USD exchange rate.
\boldsymbol{e}_t	Source: IMF – International Financial Statistics
$\Delta \boldsymbol{e}_t$	Depreciation rate of MZM vis-à-vis the USD (log).
٨٣	Change in MOZ's international reserves (log).
Δr_t	Source: IMF – International Financial Statistics.
;	MOZ 3-Month Deposit Rate (%).
I _t	Source: IMF – International Financial Statistics.
	USD America's 3-Month CDs (secondary market), an average of dealer bid rates
i_t^*	on nationally traded certificates of deposit (%).
	Source: US Federal Reserve.
$\Delta(i_t - i_t^*)$	Change in interest rate differential (%).
n	MOZ Consumer Price Index.
$\boldsymbol{\rho}_t$	Source: IMF – International Financial Statistics.
Δp_t	$\Delta p_t = (p_t - p_{t-1})/p_{t-1}$
	USA's Consumer Price Index.
p_t^*	Source: Bureau of Labour Statistics - All Urban Consumers - (CPI-U) U.S. city
	average. All items 1982-84=100.
$\Delta \rho_t^*$	$\Delta p_t^* = (p_t^* - p_{t-1}^*)/p_{t-1}^*$
q_t	Real depreciation rate = $\Delta e - \Delta p_t + \Delta p_t^*$
do	Domestic credit growth rate.
	Source: IMF – International Financial Statistics.
Δdc_t	$\Delta dc_t = (dc_t - dc_{t-1})/dc_{t-1}$
D_8_97	Dummy variable that takes on value one for all $t \ge 1997:08$ and zero otherwise.
D_AID_CONCENT	Dummy variable that takes on value one for all $t = 2005:04/5$ and zero otherwise.

MOZ – Data Description

MOZ – Phillips-Perron Test Statistic							
Series	Level	Test Specification	First Difference	Test Specification			
p_t	-1.160281	Intercept	-7.134658**	No Intercept or Trend			
\boldsymbol{p}_t^{\star}	-0.382614	Intercept & Trend	-4.732785**	No Intercept or Trend			
\boldsymbol{e}_t	-1.772598	Intercept & Trend	-4.800054**	No Intercept or Trend			
$i_t - i_t^*$	-2.321646	Intercept & Trend	-10.88693**	No Intercept or Trend			
r_t	-2.811424	Intercept & Trend	-11.63864**	No Intercept or Trend			
dc_t	-1.951027	Intercept & Trend	-13.10733**	No Intercept or Trend			

Test Clatical

STP – EMP Constituent Components

STP – EMP Estimates & Crises

Date	EMP	∆e	Δr	∆(i-i *)	Date	EMP	∆e	∆r	∆(i-i*)	Date	EMP	∆e	∆r	∆(i-i *)
1996 JAN	-10.892	1.279	2.687	-3.770	1999 APR	1.642	1.064	-1.348	0.030	2002 JUL	-11.098	-1.725	27.203	0.020
1996 FEB	3.275	2.212	-3.077	0.240	1999 MAY	-16.709	-1.339	-3.592	-6.040	2002 AUG	1.601	0.559	-2.851	0.060
1996 MAR	-4.948	5.486	30.271	-0.140	1999 JUN	-7.808	0.167	23.238	-0.210	2002 SEP	1.455	1.234	-0.560	-0.030
1996 APR	5.143	4.313	-2.484	-0.070	1999 JUL	7.193	3.482	-10.573	-0.110	2002 OCT	0.897	0.251	-3.902	0.030
1996 MAY	15.480	8.260	-20.809	0.000	1999 AUG	0.964	-1.138	-6.001	-0.170	2002 NOV	0.852	0.566	-0.745	0.340
1996 JUN	8.405	4.405	-11.574	-0.100	1999 SEP	-11.310	0.867	35.232	-0.090	2002 DEC	7.879	5.439	-7.547	0.050
1996 JUL	-1.402	-0.386	3.021	-0.070	1999 OCT	0.118	-0.658	-2.245	-0.630	2003 JAN	3.715	2.993	-2.984	0.050
1996 AUG	-1.204	-0.890	0.987	0.130	1999 NOV	-3.497	-3.436	0.095	0.130	2003 FEB	0.568	0.466	-0.297	0.020
1996 SEP	-3.198	-3.226	0.000	-0.110	1999 DEC	-1.472	-0.506	2.796	-0.050	2003 MAR	-5.954	1.568	21.032	0.040
1996 OCT	2.109	1.916	-0.394	0.100	2000 JAN	-5.078	-1.889	1.097	-0.900	2003 APR	0.297	2.160	4.575	-0.010
1996 NOV	2.522	-0.125	-7.578	0.030	2000 FEB	-0.124	-0.790	-1.928	-0.060	2003 MAY	3.815	5.987	5.472	0.020
1996 DEC	17.315	19.632	6.786	-0.060	2000 MAR	1.387	-0.320	-4.939	-0.130	2003 JUN	-17.567	-3.137	-3.871	-5.330
1997 JAN	4.343	1.282	7.652	2.010	2000 APR	-2.679	-4.688	-5.813	-0.140	2003 JUL	-1.307	-0.951	0.136	-0.010
1997 FEB	5.574	3.402	-5.878	0.060	2000 MAY	2.009	5.661	10.567	-0.430	2003 AUG	0.371	-1.794	-6.264	-0.030
1997 MAR	3.635	4.957	4.394	-0.160	2000 JUN	8.214	8.913	2.022	-0.020	2003 SEP	6.064	5.380	-1.654	0.000
1997 APR	11.694	7.543	-11.685	-0.180	2000 JUL	-2.199	-3.648	-4.276	0.060	2003 OCT	-5.917	0.486	18.363	-0.020
1997 MAY	17.856	17.185	-1.695	0.010	2000 AUG	-5.871	-3.615	6.525	0.060	2003 NOV	1.964	3.547	4.743	-0.010
1997 JUN	7.662	4.518	-8.935	0.040	2000 SEP	-27.139	-1.510	0.886	-8.990	2003 DEC	4.961	4.720	-0.860	0.010
1997 JUL	24.063	1.582	-3.810	7.560	2000 OCT	3.355	2.054	-3.682	-0.070	2004 JAN	5.451	-1.400	-3.638	2.040
1997 AUG	0.334	3.116	8.377	0.000	2000 NOV	0.764	2.156	3.947	0.020	2004 FEB	0.590	0.772	0.609	0.010
1997 SEP	2.806	5.262	7.107	0.000	2000 DEC	5.742	6.525	2.347	0.200	2004 MAR	0.926	-0.098	-3.124	0.000
1997 OCT	13.686	10.024	-10.513	-0.050	2001 JAN	-3.739	-0.319	9.812	0.830	2004 APR	1.844	-2.231	-12.197	-0.030
1997 NOV	-12.364	9.999	64.707	-0.090	2001 FEB	1.531	-0.264	-5.113	0.360	2004 MAY	5.609	3.572	-5.080	-0.120
1997 DEC	-5.365	8.718	40.748	-0.060	2001 MAR	-11.757	-2.500	26.865	0.370	2004 JUN	-1.677	-0.230	3.941	-0.260
1998 JAN	3.334	-1.040	-4.442	1.260	2001 APR	-20.518	-15.780	13.791	0.360	2004 JUL	2.678	-0.333	-8.875	-0.110
1998 FEB	2.692	-1.535	-12.147	0.000	2001 MAY	17.056	13.656	-9.919	0.510	2004 AUG	3.105	1.311	-5.190	-0.110
1998 MAR	-1.658	-6.166	-12.960	-0.040	2001 JUN	3.210	0.078	-8.816	0.280	2004 SEP	-3.603	2.919	18.953	-0.180
1998 APR	-10.901	2.524	10.460	-3.500	2001 JUL	3.593	2.760	-2.331	0.080	2004 OCT	5.213	1.932	-9.576	-0.180
1998 MAY	14.942	5.670	-26.744	-0.010	2001 AUG	0.900	3.510	7.714	0.180	2004 NOV	0.812	1.889	3.198	-0.220
1998 JUN	0.272	-1.302	-4.555	-0.010	2001 SEP	0.183	-0.003	-0.375	0.610	2004 DEC	4.447	3.037	-4.406	-0.190
1998 JUL	-2.928	2.444	15.624	0.010	2001 OCT	-0.069	-0.060	0.188	0.560	2005 JAN	-4.637	-1.592	8.811	-0.160
1998 AUG	-1.902	-2.969	-3.006	0.010	2001 NOV	-0.125	-0.973	-2.212	0.280	2005 FEB	2.472	-1.140	-10.289	-0.160
1998 SEP	1.033	7.259	18.095	0.170	2001 DEC	-0.432	-0.894	-1.092	0.200	2005 MAR	2.264	1.625	-2.338	-0.200
1998 OCT	2.408	1.280	-3.184	0.200	2002 JAN	0.131	-1.286	-4.020	0.090	2005 APR	-3.223	-1.963	3.564	-0.120
1998 NOV	-0.410	-3.506	-8.876	-0.030	2002 FEB	-0.967	-1.298	-0.878	-0.080	2005 MAY	2.654	-1.702	-12.523	-0.130
1998 DEC	-19.725	2.247	6.730	-6.900	2002 MAR	1.381	1.516	0.474	-0.090	2005 JUN	-4.714	-4.291	1.144	-0.160
1999 JAN	0.485	-2.944	-9.759	0.250	2002 APR	3.606	3.178	-1.155	0.040	2005 JUL	-17.823	-0.667	49.720	-0.190
1999 FEB	-2.362	-3.030	-1.607	-0.010	2002 MAY	3.450	4.793	3.885	0.050	2005 AUG	3.447	2.734	-2.061	-0.200
1999 MAR	2.894	-2.247	-14.551	-0.010	2002 JUN	5.535	6.054	1.500	0.010	2005 SEP	6.835	4.914	-5.477	-0.100

STP – EMP Descriptive Statistics

STP – EGARCH-M Estimation Results

Parameter	Estimate	Std. Error	t-Statistic	p-value
μ	-0.015778	0.001181	-13.36239	0.0000**
DUMMY (d_12_97)	-0.100697	0.009560	-10.53324	0.0000**
θ_1	0.004815	0.001550	3.107102	0.0019**
θ_2	0.009001	0.001437	6.263291	0.0000**
ξ_1	-0.820385	0.052763	-15.54838	0.0000**
ξ_2	0.857573	0.054739	15.66662	0.0000**

 $EMP_{t} = \mu \ln \sigma^{2} + \text{DUMMY} + \theta_{1} \varDelta dc_{t-8} + \theta_{2} \varDelta dc_{t-11} + \xi_{1} EMP_{t-2} + \varepsilon_{t} + \xi_{2} \varepsilon_{t-2}$

 $\ln \sigma_t^2 = \text{Dummies} + \lambda_0 + \lambda_1 \Delta dc_{t-3} + \lambda_2 \Delta r_{t-6} + \lambda_3 \Delta r_{t-8} + \lambda_4 trend + \alpha_1 \left| \frac{\varepsilon_{t-1}}{\sigma_{t-1}} \right| + \alpha_2 \ln \sigma_{t-1}^2$

				o_{t-1}
D_12_97	-2.859691	0.641670	-4.456639	0.0000**
D_6_01	-3.285768	0.469490	-6.998586	0.0000**
λ_{0}	-8.379134	0.802998	-10.43482	0.0000**
λ_1	-0.358151	0.052207	-6.860237	0.0000**
λ_2	-1.482998	0.618503	-2.397722	0.0165*
λ_3	2.392812	0.841404	2.843834	0.0045**
λ_4	0.035233	0.009529	3.697295	0.0002**
α_1	0.814423	0.156087	5.217762	0.0000**
α_2	-0.594424	0.062765	-9.470581	0.0000**

Diagnostics

	L-B Stan Resid	dardised duals	L-B Square	d Residuals	ARCH-LM	A Statistic	
Lag	Q	p-value	Q ²	p-value	LM	p-value	
Lag3	2.0558	0.152	2.9084	0.088	-0.034395	0.7137	
Lag4	3.5552	0.169	3.0871	0.214	-0.090009	0.3061	
Lag5	3.5827	0.310	3.5895	0.309	0.157226	0.3461	
Lag6	4.2890	0.368	5.8949	0.207	-0.041139	0.7874	
Lag7	5.7630	0.330	7.1629	0.209	-0.129071	0.0563	
Lag8	7.1623	0.306	7.5241	0.275	0.155879	0.1869	
Lag9	9.4233	0.224	7.5989	0.369	0.104902	0.3420	
Lag10	9.6555	0.290	9.8810	0.273	-0.003631	0.9732	
Lag11	11.385	0.250	9.9344	0.356	-0.102794	0.3163	
Lag12	11.387	0.328	9.9642	0.444	-0.217494	0.0069	
Lag13	11.408	0.410	10.035	0.527	-0.029446	0.7454	
Lag14	13.778	0.315	10.172	0.601	-0.081835	0.4781	
	No. of Obs	servations	Log-Lik	Log-Likelihood		SIC	
	117		161.	6857	-2.46	64568	

Notes: The parameters are as defined in the main text. A double (single) asterisk indicates that the estimated parameter is significantly different from zero at the 1% (5%) level.

STP – Data De	scription
---------------	-----------

Variables	
	Bilateral STD/USD exchange rate.
e_t	Source: IMF – International Financial Statistics
$\Delta \boldsymbol{e}_t$	Depreciation rate of STD vis-à-vis the USD (log).
٨٣	Change in STP's international reserves (log).
Δt_t	Source: IMF – International Financial Statistics.
;	STP3-Month Deposit Rate (%).
I _t	Source: IMF – International Financial Statistics.
	USD 3-Month CDs (secondary market), an average of dealer bid rates on
<i>i</i> _t *	nationally traded certificates of deposit (%).
	Source: Source: US Federal Reserve.
$\Delta(i_t - i_t^*)$	Change in interest rate differential (%).
n	STP Consumer Price Index.
P_t	Source: IMF – International Financial Statistics.
$\Delta \boldsymbol{\rho}_t$	$\Delta p_t = (p_t - p_{t-1})/p_{t-1}$
	US Consumer Price Index.
\boldsymbol{p}_t^*	Source: Bureau of Labour Statistics - All Urban Consumers - (CPI-U) U.S. city
	average. All items 1982-84=100.
$\Delta \rho_t^*$	$\Delta p_t^* = (p_t^* - p_{t-1}^*)/p_{t-1}^*$
\boldsymbol{q}_t	Real exchange rate depreciation = $\Delta e - \Delta p_t + \Delta p_t^*$
dc_t	Domestic credit growth rate. Source: IMF – International Financial Statistics.
Δdc_t	$\Delta dc_t = (dc_t - dc_{t-1})/dc_{t-1}$
D_12_97	Dummy variable that takes on value one for all $t \ge 1997:12$ and zero otherwise.
D_6_01	Dummy variable that takes on value one for all $t \ge 2001:06$ and zero otherwise.

STP – Phillips-Perron Test Statistic

	011			
Series	Level	Test Specification	First Difference	Test Specification
et	-4.386125**	Intercept	-8.847658**	No Intercept or Trend
$i_t - i_t^*$	-1.967276	Intercept & Trend	-10.58118**	No Intercept or Trend
r _t	-4.263279**	Intercept & Trend	-11.17796**	No Intercept or Trend
dc_t	-2.548944	Intercept & Trend	-11.66125**	No Intercept or Trend

