

Climate Impacts on Energy Systems

Jane Ebinger, ESMAP

Seventh Africa Development Forum | October 12, 2010

Energy...Rising Demand

Without action tripling of GHG emissions by 2050

Source: World Bank, Infrastructure Brief

...Changing Development Pathway

... Changing Climate Parameters

- Increasing temperatures over land & more variability in some areas (e.g. W Africa)
- Increased risk of heat waves
- Rising sea levels
- Permafrost degradation
- Changing precipitation patterns more intense rainfall, longer periods of drought
- Variations in peak solar production (e.g. decrease E Africa)
- Decreasing mean mid-latitude wind speeds
- Possible increasing storm intensities

In 2005 alone climate extremes accounted for a 13% variation in energy productivity in developing countries (WDR, 2009)

ENERGY SERVICES WILL BE INCREASINGLY AFFECTED

Year-to-Year Variability in Hydropower Output (1990-2006)

Significant Hydropower Development Expected

Source: O Dione, World Bank

But ... Hydropower Generation May Benefit or Suffer (or both) by 2050

Source: <u>http://spectrum.ieee.org/energy/renewables/future-of-hydropower</u>

...heating will reduce but cooling demand will rise

✓ Inter-annual variability and cold periods will remain

 \checkmark Seasonal demand profiles will shift for buildings, infrastructure, agriculture

✓Temperature tolerance of infrastructure will be tested

... and other wide ranging impacts

ENERGY IMPACT	
Renewable energy resources	Changes in runoff, wind, crop response, ocean climate, atmospheric transmissivity
Energy supply	Hydro – water availability and seasonality Wind – variable wind regime Bio-fuels – reduced transformation efficiency Solar – reduced solar cell efficiency Thermal - Generation efficiency and cooling water availability Oil & Gas – extreme events
Transport/ Transmission & Distribution	Extreme event frequency, sea level rise
Design, Operations & Maintenance	Location – sea level rise, extreme events Downtime/ trade – extreme events
Demand	Temperature rise, inter-annual variations
Cross sector	Water resource management/ competition & locations

"Guarantee the supply of energy, and balance production and consumption throughout time and space" – an ongoing process

ADAPTATION IS NOT AN OPTIONAL ADD ON

Prevent Effects or Reduce Risks

- Technological responses
 - Physical protection (e.g. targeted refurbishing)
 - Design standards (e.g. pipelines in discontinuous permafrost zones)
- Behavioral responses
 - Reconsider location (e.g. coastal infrastructure)
 - Anticipate arrival (e.g. better forecasting, contingency plans)
 - Change O&M (e.g. adapt to river flow patterns)

Share Responsibilities... Exploit Opportunities

- Financial instruments (e.g. weather derivatives, insurance)
- Diversify the energy system
- Energy/ water saving and demand side management
- Decentralized energy structures
- Urban policy & land use planning

INTEGRATED RISK BASED PLANNING WILL BE CRITICAL

Climate Risk Management

"Responding to climate involves an **iterative risk management process** that includes both mitigation and adaptation, taking account of actual and avoided climate change damages, co-benefits, sustainability, equity and attitudes to risk" (IPCC 2007)

Integrated Planning is Highly Important

- Integrate plans
 - Within the sector
 - Between sectors (e.g. water/ energy/ agriculture)
 - Across stakeholders (e.g. national/ local, public/ private etc)
 - Mitigation and adaptation (e.g. RE)

"The formal knowledge base is still at an early stage of development" (Willbanks et al., 2007)

AWARENESS, KNOWLEDGE AND CAPACITY ISSUES

Weather & Climate Servicesgaps in capacity

- Many services below WMO standards
- Historic records lacking or inaccessible
- Lack local skills and capacity for climate modeling
- Lack of tailored information and dialogue (cross sector)

BLUE: stations for which more than 90 percent of the reports were received GREEN: stations for which 45 to 90 percent of the reports were received ORANGE: stations for which less than 45 percent of the reports were received RED: silent stations

Near-term Actions

- Climate Information
 - Nature and timing of climate change
 - How climate parameters affect energy systems
 - Assessment of climate information needs for energy
 - Tailored and timely flow of climate information to the energy sector
- Decision Making
 - Practical tools tools and guidance for CRM
 - Emerging adaptation practices and new standards
 - Expanded knowledge base (e.g. water/ energy, mitigation/ adaptation interactions, research on technologies/ modeling, economic assessment)
- Implementation
 - Policy instruments to support action
 - Awareness and exchange knowledge
 - Capacity building

Thank You!

For more information:

Jane Ebinger jebinger@worldbank.org

www.esmap.org

<u>Study completed with representatives from</u>: Basque Climate Change Center, ClimDevAfrica, CSIRO Australia, Danish Meteorological Institute, ESMAP, Federal University of Rio de Janeiro, Oxford University, UNEP Risoe, World Bank