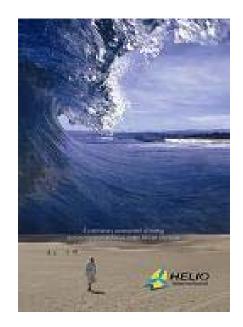
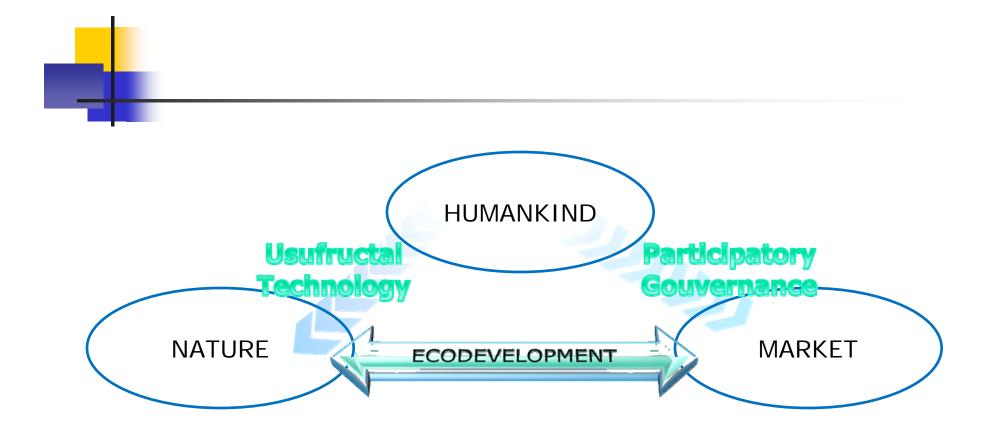
ENSURING ENERGY SECURITY IN THE FACE OF A CHANGING CLIMATE

Climate-Proofing Energy Systems. Tools for Assessment and Monitoring

Hélène CONNOR Axel MICHAËLOWA - Laura WILLIAMSON


African Development Forum VII 12 October 2010 – World Bank Side Event UN Conference Center | Addis Ababa, Ethiopia



HELIO International

- HELIO International is an independent, international network of leading energy analysts whose common goal is to promote sustainable and equitable development.
- HELIO experts carry out independent evaluations of national energy policies and inform decisionmakers about their effectiveness. They also analyse and advise on ecodevelopment, participatory governance and climate stabilisation.
- HELIO's core activity is Sustainable Energy Watch. SEW's objective is to measure progress towards sustainable energy and ecodevelopment practices nationally, regionally and globally.

Weather/Climate Risk Management: Energy sector

- Energy systems are both the key and the Achille's heel of our modern societies
- In unstable times / wars, they are a favorite target and require special protection
- Unconsciously humankind has been at war with its own environment for a long time. Large energy installations have been a major contributor to:
 - Destruction of habitats (biodiversity)
 - Soil degradation and loss (desertification, nuclear and other wastelands)
 - Air and water pollution

...

Disruptions of natural cycles (carbon) and genetic patrimony

Weather/Climate Risk Management: Energy sector

Now nature retaliates visibly and in no uncertain terms to preserve its own balance...

ENSURING ENERGY SECURITY IN THE FACE OF A CHANGING CLIMATE

- Climate change impacts **both** the demand and supply-side of the energy equation:
 - Impacts of temperature and climatic changes direct AND indirect, immediate or delayed
 - Role of efficiency in increasing security (decreasing demand rather than increasing costly supply)
- Main obstacle: Lack of commonly accepted parameters/indicators to compare:
 - Adaptation needs
 - Effectiveness of adaptation measures
 - Total social costs (free of subsidies & including externalities)

ENSURING ENERGY SECURITY IN THE FACE OF A CHANGING CLIMATE

- An energy system can be made more secure in several ways:
 - Good siting practices
 - Diversification
 - Better design, manufacturing and use
 - Closeness of supply and demand \rightarrow decentralisation
- But it must first be part of a genuine strategy of ecodevelopment:
 - Devised and adopted by citizens living in the area (agenda 21)
 - Environnementally sane
 - Technologically and economically sustainable

Project Vulnerability-Adaptation-Resilience (VAR) in Africa

 Assessment of the vulnerability of energy systems in ten African countries:

Benin, Burkina Faso, Cameroon, Democratic Republic of Congo, Kenya, Mali, Nigeria, Senegal, Tanzania, Uganda

- Identification of their assets of resilience (state of the five forms of capital)
- Recommendations to reinforce capacity to face climate change impacts

Project Vulnerability-Adaptation-Resilience (VAR) in Africa

- VAR Project developed a methodology and indicators for energy systems to:
 - 1. Identify key energy systems
 - 2. Measure their vulnerability and resilience
 - 3. Assess local adaptive capacity

Vulnerability + Adaptive capacity = Level of resilience

Indicators: what to measure...

Vulnerability:

- Country-level vulnerabilities
- Individual energy systems vulnerabilities
- Transmission and distribution weaknesses
- Capacity for Resilience (all forms of capital):
 - Environmental
 - Technological
 - Human
 - Financial
 - Institutional
 - governance; decision-making; regulations; civil society

Country-level Vulnerability Indicators

Environmental:

- Change in rainfall patterns
- Variation in temperatures
- Economic:
 - Households getting access to electricity
 - Increased energy autonomy

Technical:

- Change in renewable energy provided
- Diversity of renewable supply
- Social:
 - Change in prevalence of diseases
 - Change in employment
- <u>Civic</u>:
 - Land tenure improvement
 - Public participation in planning process

- **Coal**: VC1: Number of coal mines plants located at less than 1 metre above sea level and within the area that could be flooded by a flood with a current recurrence period of 100 years
- Oil and Gas: VOG1: Share of offshore oil and gas installations likely to be hit by a storm of more than 70 m/s gusts within the next 20 years (%). VOG2: Share/number of refineries likely to be hit by a storm of more than 70 m/s gusts within the next 20 years (%)
- All Fossil Fuels: VF1: Number of thermal (coal, oil and gas) power plants located at less than 1 metre above sea level and within the area that would be flooded by a flood with a current recurrence period of 100 years

Additional information: Expected number of droughts that lead to a capacity decrease of thermal power plants by more than 10% within the next 30 years.

• Nuclear:

- VN1: Number of nuclear power plants located at less than 1 metre above sea or river level and within the area that would be flooded by a flood with a current recurrence period of 100 years
- VN2: Number of incidents/accidents since the plant was built
- VN2b: Describe the most significant incidents

Transmission and Distribution Systems

- VT1: Length of in-country, above-ground transmission and distribution lines (km)
- VT1b: Distinguish voltages (2 sub-indicators): high voltage transmission; middle + low voltage lines (distribution)
- VT1c: Describe any transnational lines
- VT2: Number and length of power cuts (differentiate between failures due to weather or equipment failures and those cuts due to rationing)
- VT2b: Average hours of interruption per year
- VT3: Percentage of energy supply requiring regional transport over 50 km
- VT3b: % that is transportation of fossil fuel
- VT3c: % that is transportation of biomass
- If possible, comment on the informal sector

Hydro

- VH1: Expected precipitation change over next 20 50 years
 (%) and/or probability of floods in each watershed
- VH2: Number of multiple-use dams in the country today: volume of water (m3) of each dam
- VH2b: Describe what % of the water is used for: agriculture and irrigation; power production; drinking

Additional information: Expected additional run-off from glacier melting (million m3)

Biomass

- VB1: Proportion of biomass used for energy purposes (%) in total biomass production
- VB1b: If possible distinguish between different sources and different applications – agricultural biomass harvest; generation of electricity, heat
- **VB1c**: Forest (as defined by FAO) biomass harvest: electricity; heat
- VB2: Expected precipitation change over next 20 50 years (%)
 Additional information: Probability of temperature increase beyond biological heat tolerance of key biomass crops within the next 20 years (%)

Wind

- **VW1**: Number of wind turbines at less than 1 m above sea level
- VW2: Projected change of average windspeed over the next 20 years, based on regional climate models (%)

Solar

- **VS1**: Capacity of solar installations already in place (m2)
- **VS1b**: Distinguish between PV (MW) and thermal (m2)
- VS1c: Describe sites (quality of the insulation and of the building on which systems are installed) and what type of ownership (private, government, public/private partnership etc.)
- VS2: Expected temperature increase in the next 20 years (°C) relevant for PV capacity)

Additional information: Projected change in rainfall and cloud cover over next 20 years (%)

Energy Systems Resilience Indicators

- Indicators needed for a snapshot assessment of the adaptative capacity of energy systems using a selection of resilience indicators:
 - RI4: Hazard maps for floods and drought
 - **RI5:** Siting and construction guidelines
 - **RI6:** Emergency plans for meteorological events
 - **RI7:** Availability of Domestic insurance schemes
 - **RI8:** Citizens' users groups
 - **RCHG1:** Siting maps for mines/power plants usable for climate events
 - RCHG2: National regulations for thermal plants siting with sufficient cooling water availability
 - **RH1:** National plans for hydro optimisation
 - **RH2:** Presence of desiltation gates
 - **RW1:** Storm proofing of wind installations
 - **RW2:** Siting maps wind installations

Example of Indicators of Increased Resilience: Civic involvement

Energy systems are a strategic public good put under the care of citizens and of responsible authorities. They require:

- Balanced energy governance between suppliers and users
 - Participatory energy decision-making with accountability
 - Public awareness, skills and means (Councils of Users-CUBEs)
 - Free and early access to relevant information
- Integration with ecodevelopment planning and policies
 - Institutional mechanisms, capacities and structures (Agenda 21)
 - Sustainable livelihoods to reduce overall vulnerability
- Preparedness: Organisational capacities and coordination
 - Early warning systems and trained emergency teams
 - Collective contingency planning

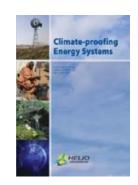
VAR Recommendations to Climate-proof Energy Systems

- Assess and monitor energy systems to ensure systems can adapt to anticipated climate change impacts
- 2. Expand current assessment process for new energy systems
- Develop medium- to long-term strategies for decentralised low carbon energy supply systems
- 4. Implement **energy demand management** as adaptation measure

VAR Recommendations to Climate-proof Energy Systems

- Cultivate in-country capacity to evaluate/respond to energy needs from a climate perspective
- 6. Invest in **ecosystem services** that support existing and planned energy production
- 7. Establish **transparent** technology transfer and financing procedures
- 8. Develop **participatory governance** to truly understand energy needs and mobilise support to promote ecodevelopment

We run carelessly to the precipice, after we have put something in front of it to prevent us from seeing it. Pascal (Pensées)



Tools for Assessment and Monitoring

Reports, indicators and more:

- Go to: www.helio-international.org
- Click on:

Thanks to our funders:

On behalf of Federal Ministry for Economic Cooperation and Development

