

WISER RCOFs knowledge exchange workshop

Addis Ababa (Ethiopia), 23 march 2018

Seasonal forecasting process at regional/national ~ AGRHYMET experience ~

HAMATAN Mohamed & TINNI HALIDOU Seydou

AGRHYMET Regional Center - CILSS Niamey (Niger) www.agrhymet.ne

Presentation of the AGRHYMET Regional Center AGRHYMET: AGRonomy, HYdrology and METeorology

Created in 1974, after the drought 1970's

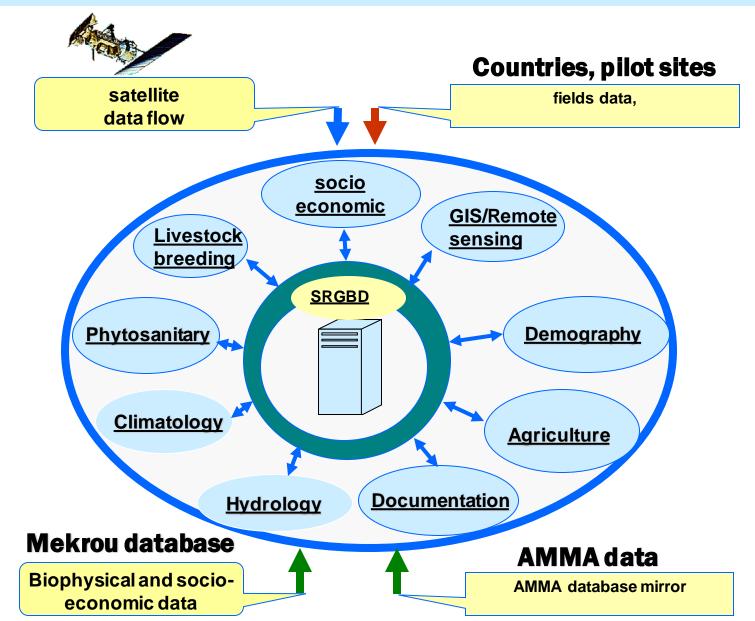
Institution specialized in:

- Production of operational information for decision-making in the fields of agrometeorology, hydrology, meteorology and food security.
- □ Training (diploma and short training on TS, Engineers and Masters)

14 member countries: but all the products are for the 17 west-african and ECOWAS countries

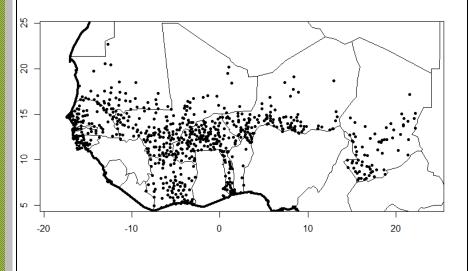
Benin Burkina Faso Cap Vert Côte d'Ivoire Gambie Guinée Guinée-Bissau	Mali Mauritanie Niger Senegal Tchad Togo Soudan
Ghana Sierra Leone	Nigeria Liberia

Mission

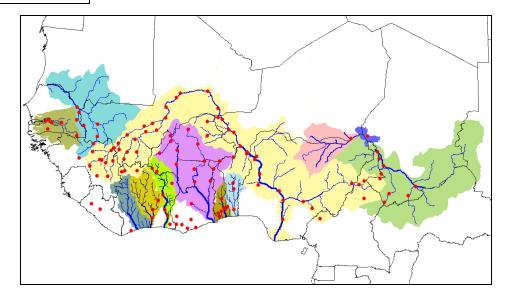

Investing in the quest for food security, water control and the fight against desertification for a new ecological balance in the Sahel

Some missions contributing to the mandate of CILSS

- Collection, processing and data management at regional scale
- Applied research in the area of agrohydromet and GIS
 Develop and disseminate information at regional level of policy makers: food security, early warning on
 - hydroclimatic extremes, etc.
- Training and transfer of operational tools, methods and know-how in climatology, agrometeorology, hydrology, plant protection, geomatics, remote sensing.


Regional database system (Hydromet network data, Remote sensing and Survey data)

CILSS

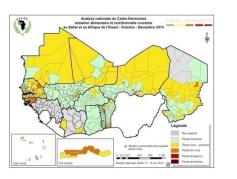

Rainfall and river discharge measurement networks

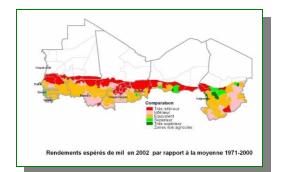
Around 1500 rain gauges (1915 – 2017)

CLIDATA and CLIMBASE for climatological data management

Around 250 hydrometric stations (1917 – 2017) HYDROMET for hydrological data management

www.agrhymet.ne




Some information and decision support products

Products of season monitoring:

- ✓ Seasonal forecasts of agro-hydro-climatic characteristics
- ✓ Climate monitoring: rainfall, surface T °, ITD,
- ✓ Environmental monitoring: surface water, bush fires,
- Monitoring of pastoral resources: herbaceous biomass, pastures, vegetation index,
- ✓ Agricultural monitoring: crop water needs, yield forecast,
- ✓ Phytosanitary monitoring.

Cadre Harmonisé for identifying and analyzing food insecure areas and populations.

Seasonal forecasts of agro-hydro-climatic characteristics

1. Evolution

1998 - 2010

- Rainfall JAS
- River basin flows

2011: New approach

- Rainfall JJA and JAS
- Agrometeorological characteristics of the rainy season
 - Onset date
 - Ending date
 - Length of dry spells
- Hydrological characteristics of the rainy season
 - River basin flow
 - Onset date of the rivers flow

All these characteristics are compared to the current normal 1981-2010

2. Methodology

Pre-Forum

- Three working groups (Climatology, Agrometeorology and Hydrology)
 - + Deasaters risks reduction Agencies
- Analysis and data processing
- Production of forecasts
- Forecast consolidation (plenary session, discussions)
- Development of consensus forecasts
- Advices and recommendations to users

G Forum

- Communication of the prospects of the season
- Communication of advices and recommendations
- Exchanges

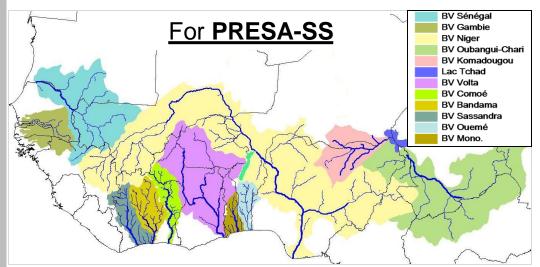
Post-Forum

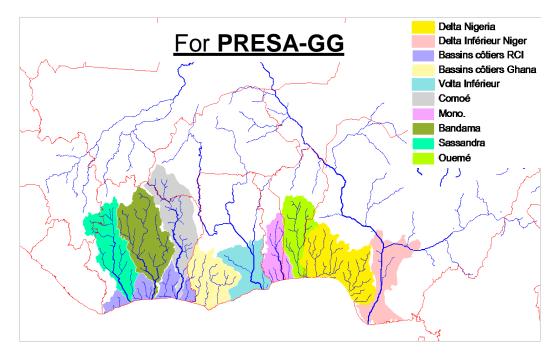
- Dissemination
- Monitoring and updating

3. Actors and periods

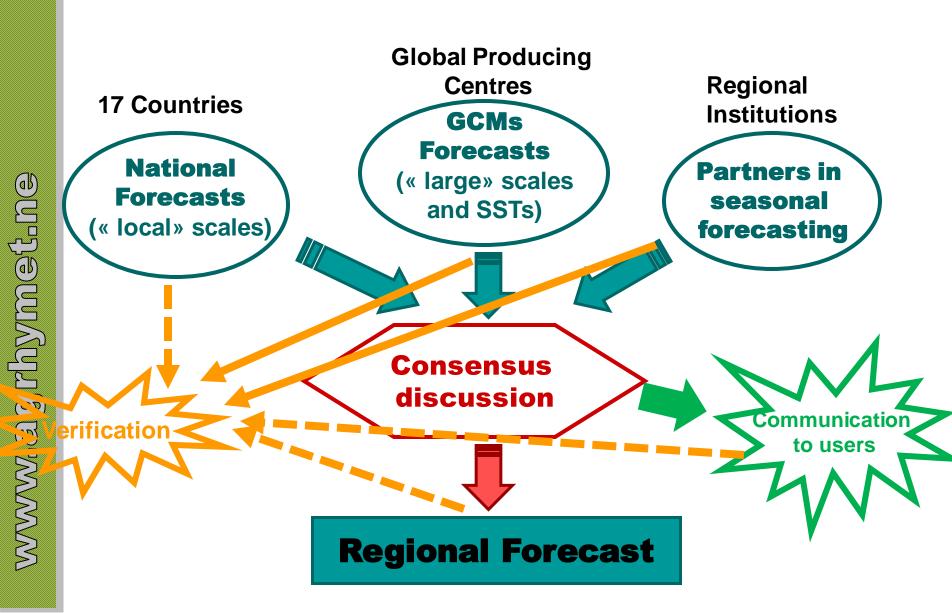
AGRHYMET in collaboration with ACMAD and its partners (IRI, UK Met Office, etc.)

PRESAGG: PREvision SAisonnière pour les pays du Golfe de Guinée:

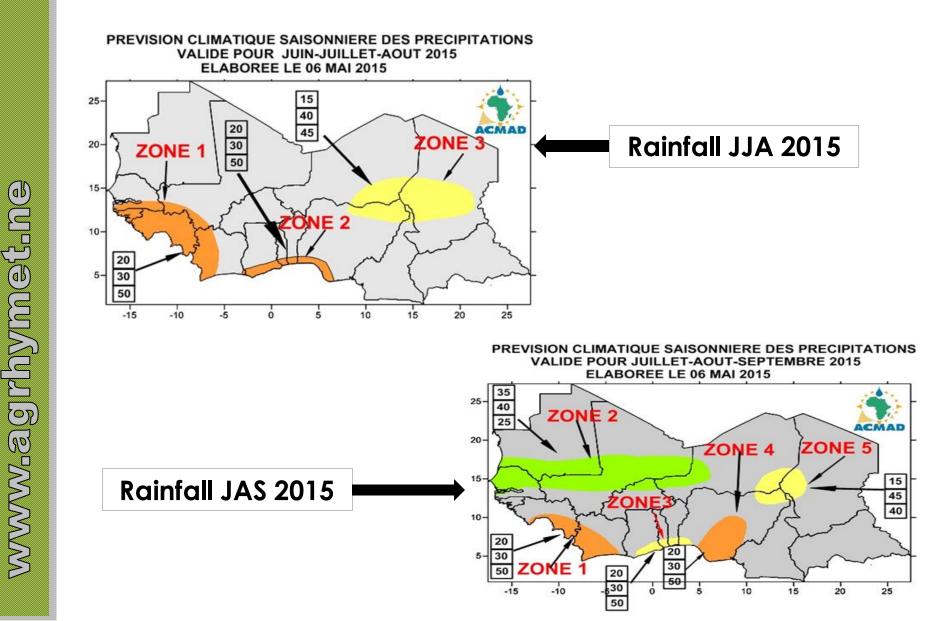

- At the beginning of March,
- Bring together the SNMH, the representatives of the DRRs of the 7 Gulf of Guinea countries and the 2 rivers basins organizations (ABN, ABV).


PRESASS: PREvision SAisonnière pour la zone Sahélo-Soudanienne:

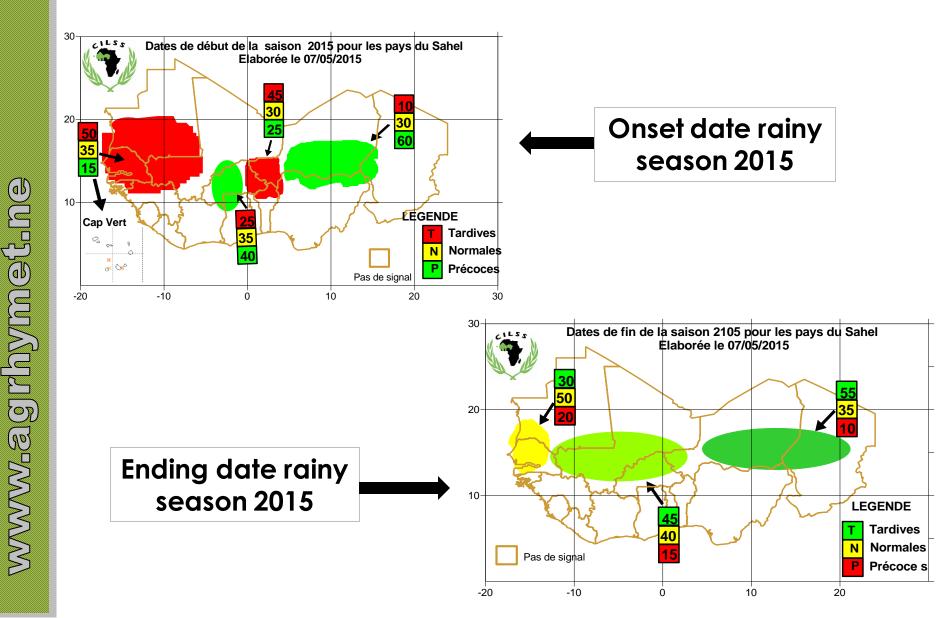
- At the beginning of May,
- Forum brings together all the SNMHs of the CILSS/ECOWAS countries, the 5 rivers basins organizations (ABN, ABV, CBLT, OMVG, OMVS) and the representatives of the DRRs.


Basins concerned by seasonal forecasts

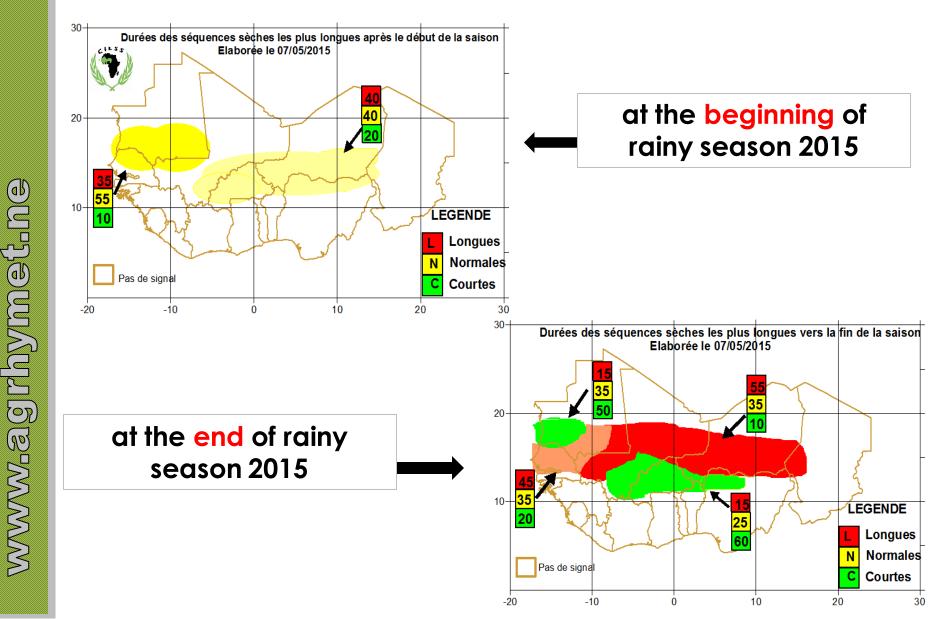
Seasonal forecasts



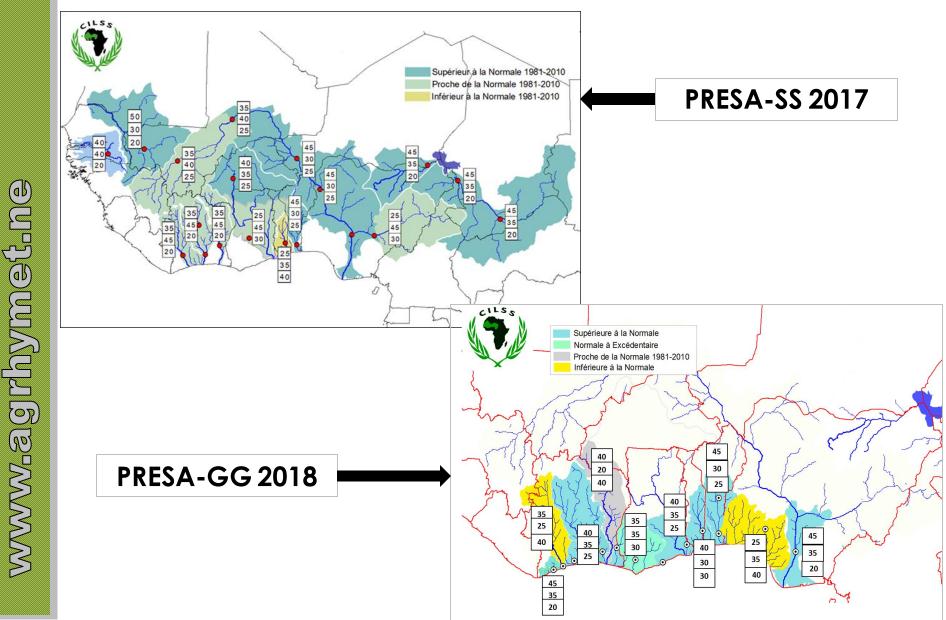
Some information and decision support products from forecast forums



Prospects of rainfall



Prospects of onset/ending date



Prospects of the length of dry spells

Prospects of flows

Dissemination and communication

To Users: farmers, water resources managers, NGOs, DRR, etc.

- Presse release
- Special Bulletin
- Mailing list
- AGRHYMET website : <u>www.agrhymet.ne</u>

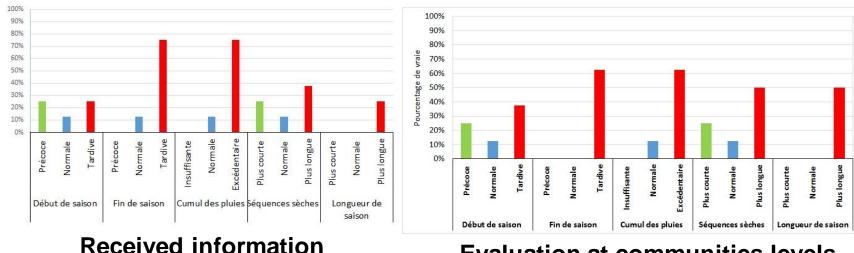
New approach

- Communication with users trough some pilots initiatives : CCAFS, ISACIP, ACCIS, ONGs
- Local radio, farmers, local decisions makers, local technical services, etc.

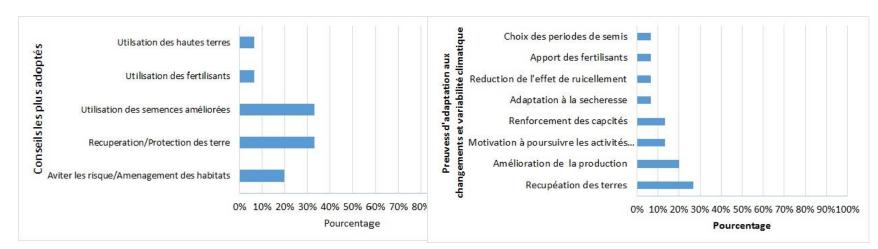
Communication of seasonal forecast with some national services

Communication of seasonal forecast with end-users



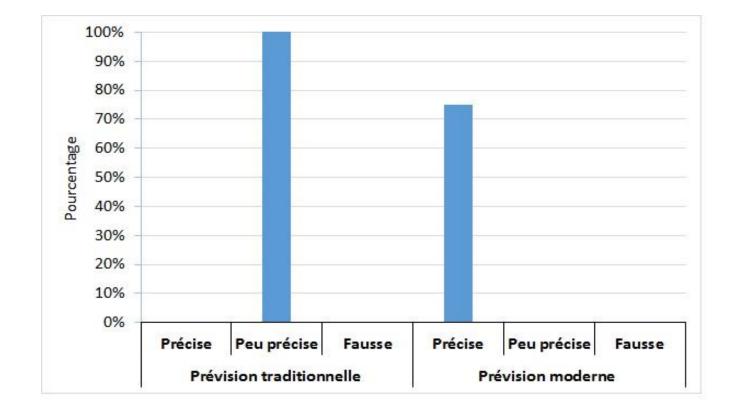

Verification at national Levels

	A	в	C	D	E	F	G	н	- I	J		к	L	M	N	0	P	Q	1
1	STN	SAVE	KANDI	PARAKO	(MALANV	II BANIKOAR	BEMBER	EJOUGOU (KOUAND	E NATIT	nng i	NIKKI	TANGUIETA	TCHAOUR	BETEROL	KALALE	Okpara	OUESSE	
2	LAT	8.03	11.13	9.35	11.87	11.3	10.2	9.7	10.33	10.32	1	9.93	10.62	8.87	9.2	10.3	9.47	8.5	
3	LON	2.47	2.93	2.6	3.4		2.67	167	1.68	1.38		3.2	1.27	2.6	2.27	3.38	2.73	2.42	
6	1981	117							144		109	121			119		114		
5	1982								104		137	126			129				
5	1983								124		125	130			127				
<u> </u>	1984	95							10		106	117			99				
1	1985	13					152				89	140		117	132				
6	2013			01 82							107	92				121			
7	2015	77	7 16	2 153	9 184	4 164	140		125	5	177	135			131	12	136	125	
8										-	-								
0	Tercile Inferieur	97,7	1 124,5	7 106,9	1 143	3 115,48	119,46	101,81	108,83	2 10	7,57	128,4	117,64	100	101,25	11	106,82	103,16	
1	Tercile superieur	113,28	3 135,1	4 120,74	163	9 138,12	125,82	2 110	127,28	8 🚺 11	6,42	144	135,82	108,56	114,5	134,3	122,82	115,32	
2										_									
	OBSERVATION	P	T	T	T	T	T		N	T		N			т	N	T	т	
5	PREVISION	P	т	T	т	т	т		т	т	-	т			т	т	т	т	
8	FREVIOION	F									-								
_	VERIFICATION	V	v	V V	V	v	v		F	V.	· · ·	F			v	F	V	V	
8																			
9																			
0		NOMERE	DE VRAI	10	1														
1																			
2		NOMERE	DEFAUX																
3				_						_	_						_		
4								AU TOTAL											
5				-				AUTOTAL											
7				-															
8						NOMBRE D	EVRAL	10				POURCE	NTAGE VRAI	77%					
9																			
0						NOMBRE D	E FAUX	3				POURCEN	TAGE FAUX	23%					
1																			
2						NOMBRE D	ESTATION	s 13											

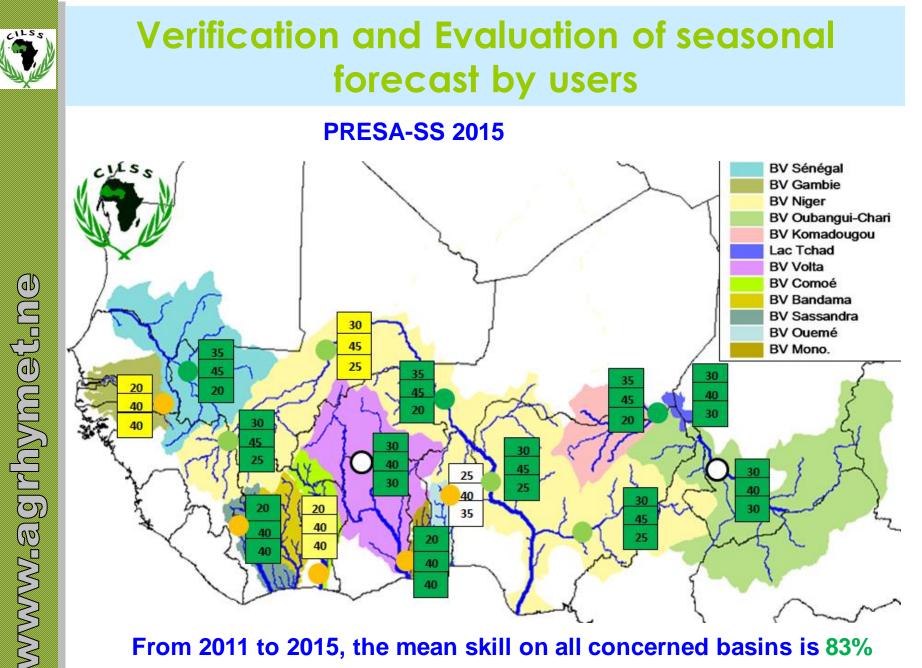

				EVALUATI	ION DATE D				
				Tercile	Tercile	OBSERV	PREVIS		
STN	LAT	LON	2015	Inferieur	superie	ATION	ION	NOTE	
SAVE	8.03	2.47	77	98	113	P	Р	¥	
KANDI	11.13	2.93	162	125	135	Т	Т	¥ .	
PARAKO	9.35	2.6	159	107	121	Т	Т	¥	
MALANY	11.87	3.4	184	143	169	Т	Т	¥	
BANIKO	11.3	2.43	164	115	138	Т	Т	¥ .	
BEMBE	10.2	2.67	140	119	126	Т	Т	¥	
DJOUGO	9.7	1.67		102	110				
KOUAND	10.33	1.68	125	109	127	N	Т	F	
NATITIN	10.32	1.38	177	108	116	Т	Т	¥ .	
NIKKI	9.93	3.2	135	128	144	N	Т	F	
TANGUI	10.62	1.27		118	136				
TCHAOU	8.87	2.6		100	109				
BETERO	9.2	2.27	131	101	115	Т	Т	¥ .	
KALALE	10.3	3.38	129	115	134	N	Т	F	
Okpara	9.47	2.73	136	107	123	Т	Т	¥ .	
OUESSE	8.5	242	125	103	115	Т	Т	V V	

Verification and Evaluation of seasonal forecast by users

Evaluation at communities levels



Advises use by farmers


Impacts of the advices

Perception of communities about seasonal forecasts

www.agrhymet.ne

From 2011 to 2015, the mean skill on all concerned basins is 83%

Use of seasonal forecast in impacts models

- SARRA-H
- HYPE
- □ Strengthening observation networks
- Downscaling of the seasonal forecast
- Fundraising (for forums at regional level and dissemination at national level)

Role of AGRHYMET in FANFAR

WP3: Forecasting and alert ICT system

Task3: Information derivation

WP4: Sustainability through capacity, support, dialogues and business development

Task4: Dialogues to facilitate exploitation and sustainable uptake of the system in West Africa

WP2: User needs, tests and behavioural responses

Technical validation of all functionalities

Task1: Co-design flood forecasting and alert system and services based on user needs

Task2: Test forecasting and alert system in practical local flood management, and technical validation

WP4: Durabilité à travers la capacité, le soutien, les dialogues et le développement des affaires

Task2: Provide support for OHFA system users

WP1: Gestion, diffusion et communication

Task2: Dissemination and communication

WP3: Forecasting and alert ICT system

Task1: Access key input data sources

Task2: Select, adapt, and deploy hydrological models on the OPCP, and test scalability

Task4: Distribution channels for automatic information delivery to endusers

Task5: Operate and adapt the H-TEP Operational Production Cloud Platform

WP4: Sustainability through capacity, support, dialogues and business development

Task1: Develop human capacity

Task3: Define a business plan for further exploitation

Have an operational tool for the benefit of the people of West Africa

WP1: Management, dissemination and communication

Task4: Translation

Thank you for your attention