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Executive Summary 

 

The CR4D Regional Pilot Project-Central Africa focuses on subseasonal to seasonal (S2S) forecasts in 

building climate information services for agriculture in Central Africa. This project was scheduled to 

begin on 25 May 2016 and expire four months later on the satisfactory completion of the services 

described in the terms of reference. The project was a partnership owned by the United Nations Economic 

Commission for Africa and operated by the African Climate Policy Centre (ACPC) of the Special 

Initiatives Divisions, along with a multi-stakeholder team in Central Africa.  

 

The project was designed to define a wide array of prototype climate information and services at the 

subseasonal to seasonal timescale that would be developed in partnership with University of Yaoundé 1, 

national meteorological and hydrological services (NMHS) and research institutions, by improving or 

enhancing existing prediction tools.  

 

The project targeted research and data sets needed to develop and use the products at the S2S timescale. 

The project sought major S2S forecasts and hindcasts from the global data archives at multiweek lead 

times (15-90 days) in order to be used more efficiently in agriculture. Those fore- and hindcasts from the 

global data archives were assessed using specific metrics in ways that are tailored to the needs of farmers.  

 

There is a growing demand in Central Africa for refining the agricultural calendar through reliable onset 

dates of growing seasons and the length of dry spells. The identification of these farmers’ needs to co-

design, co-produce and co-evaluate climate information is among the best options to evaluate climate 

models’ performance at S2S timescale in Central Africa.  

 

This initiative appeared as a good opportunity to practice sustainable agriculture in Central Africa. The 

target countries were Cameroon and the Democratic Republic of the Congo (DRC). Other countries 

should follow. In Cameroon, the agricultural sector employs at least 70 per cent of the labour force. The 

sector accounts for about 30 per cent of the country’s gross domestic product. Agriculture also accounts 

for at least 40 per cent of total foreign exchange earnings constituted of perennial export crops (bananas, 

cocoa, coffee, cotton, timber, tobacco, and palm oil). The DRC has a good potential for agricultural 

development but 70 per cent of the country’s population lack access to good and sufficient food. The 

country’s maincrops are cassava, maize and rice. 

 

Since the purpose of this project was delivery of climate information relevant to agriculture in Central 

Africa, it focused on the agricultural calendar with the starting dates of the growing season. For 

Cameroon, a south-north positive gradient can be determined from the start dates of the agricultural 

season. Thus, the growing season starts in March for most of the southern localities, continues through 

April in the central part of the country (including the Adamawa region), and then June for the northern 

regions. Concerning the DRC, the growing period, called season A, begins in September for areas near 

the central part of the country. Growing starts in October for the north-east, and November for the south. 
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Researchers from UY1 and CIFOR-IITA have co-designed metrics to improve prototype climate 

predictions for agriculture at the S2S timescale in Central Africa. Now, “onset dates of the growing 

season” and “prolonged dry spells during the growing season” have been identified as critical climate 

pressure periods on crops during the sowing and growth phases that reduce crop yields. Criteria 

(including precipitation thresholds) used to compute these metrics were co-designed by researchers form 

UY1 and forecasters from national meteorological and hydrological services. Because of the strong 

spatial variability of the annual rainfall cycle, criteria used to define these metrics for Cameroon are 

different for those of Congo. 

 

Five global climate model forecasts (BOM, CMA, ECMWF, HCMR, NCEP) were assessed among the 

11 models of the S2S forecast database. These five model were selected based on specific criteria such 

as forecasts must be done at least two weeks before the target period of onset of rainy season, with 

forecast spans of 2, 3 and 4 weeks ahead the target date, knowing that S2S time ranges are defined 

between 2 weeks and 3-month scales.  

 

Researchers and forecasters co-evaluated performance of models considering precipitation thresholds 

used to compute metrics with observation. However, in order to explore potential application bias 

correction to model forecasts other precipitation thresholds were applied to model outputs to compute 

metrics.  

 

Analysis of observation data shows that in Cameroon mean onset dates commonly occur during the first 

half of the year, the earliest in the southern part and the latest in the far north.  In DRC, a relative moving 

trend (earlier to later) of onset dates has been depicted, from north-east to south-west. It gradually 

becomes late with decreasing latitude.  There is a relative pattern of increasing variability of onset date 

of growing season from the north to the south. Weak variability occurs in the north, where standard 

deviation is about 8 days, whereas highest variability appears in the southern region, reaching 25 days. 

 

Hindcast analysis shows that for the growing season in Cameroon all models seem to depict a well-

observed average (near normal) onset date category. The Chinese Meteorological Administration (CMA) 

is more skillful compared with the European Centre for Medium-Range Weather Forecast (ECMWF) 

but even both models show strong deficiencies for the earlier and later onset date categories. Australia’s 

Bureau of Meteorology (BoM) displays better skill for all onset categories.  Over DRC, all models 

present deficiencies to predict an observed early onset date category. For others onset date category 

models show improvement, with highest performance for BoM whereas skills of CMA and ECMWF are 

close together. 

 

A verification of forecasts was conducted using the Standardized Anomaly Index, mean bias, frequency 

bias, and equitable threat score. Broadly, considering onset dates, models show good skill to forecast 

“average” or “normal” category of onset dates over Cameroon and DRC with higher frequency bias 
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across large number of stations for CMA, followed by BOM and then ECMWF. In the case of dry spells, 

exploration of potential application of bias correction to model forecasts, and dry spell detection at a 

threshold of 1millimetre (mm) reveals that CMA, followed by BoM forecasts, are clearly improved.   

 

Another important output of this pilot project is the established partnership between the regional project 

team and the International Research Institute (IRI) for Climate and Society of Columbia University. This 

was launched during a workshop on S2S forecasts organized in the region, and managed by a researcher 

from the Institute.  

 

As outlooks, much could be furthered after this study in terms of additional agrometeorological metrics 

such as water availability during the growing season. This is because decisions on cropping patterns can 

benefit from S2S forecasts during dry spells and on rainfall water available under dry to driest conditions, 

covering the full growing season. This enables the application of supplemental irrigation, which may 

require forecasts with lead times of 14 to 30 days. Also, the remaining countries of Central Africa should 

be involved.   
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1 Introduction 

 

The economies of Central African countries and their rural households depend largely on agriculture. 

For this reason, agriculture may be expected to be a key component of growth and development. 

However, agriculture in Central African is extremely sensitive to climate fluctuations, which may hamper 

livelihoods, food security and national development in the region.  This situation, then, underlines the 

need to bring suitable climate information into the mainstream of agricultural planning. 

 

The Climate Research for Development (CR4D) initiative promotes and nurtures collaborative user-

driven, climate research activities to improve climate information needed for decision-making and 

development planning in various climate sensitive to socioeconomic sectors over Africa. This initiative 

appears as a good opportunity to practice sustainable agriculture throughout Central Africa.  

 

Within the framework of CR4D, a four-month pilot research project was implemented in Central Africa. 

This pilot project set out to assess the effectiveness of global climate model prediction based on selected 

metrics, in order to improve prototype climate predictions at subseasonal to seasonal (S2S) timescale, 

with relevance to agriculture in Central Africa. Metrics assessed in this report are onset dates of the 

growing season and the length of dry spells during the critical phase of the growing season. 

 

The report aims to present outputs from activities of the pilot project. In this report, a unique assessment 

of modern global climate model prediction database to capture weather indices useful for agricultural 

planning in Central Africa is presented. This database is an opportunity to explore forecasting events 

from a subseasonal to seasonal timescale. 

1.1 Target countries and institutions 

 

The pilot project focuses on Cameroon and the Democratic Republic of the Congo (DRC) (see figure 1). 

These two countries form part of the Congo Basin forest and are members of the Commission des Forets 

d’Afrique Centrale (Central Africa Forests Commission). The stakeholders are from climate information 

producing units, universities and international non-governmental organizations involved in agricultural 

research in the region. 

 

In Cameroon, the institution in charge of meteorology is distinct from that of hydrology for Cameroon, 

while in the DRC both functions are carried out by the same institution. Therefore, for issues related to 

weather prediction and related climate services, it is apt to use the names National Meteorological Service 

(NMS) or the Cameroon Meteorological Department for that country, and for DRC the National 

Meteorological and Hydrological Services. 

 

In Cameroon, four institutions are involved in the project. The first is the NMS, one of whose main 

mandates is the provision of climate information to all users. Climate information that this service 
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provides consists mainly of weather forecasts and a dekadal agrometeorological bulletin. 

 

Figure 1 

Targeted countries in Central Africa (Cameroon an DRC) (left); selected meteorological 

observation station (right). 

 

 

 

 

 

Research on weather prediction at the University of Yaoundé 1 (UoY1) is conducted in the Laboratory 

of Environmental Modelling and Atmospheric Physics, and at the Center for International Forestry 

Research (CIFOR), a facility of the Consultative Group on International Agricultural Research (CGIAR). 

A team member working at CIFOR is also involved in activities at the International Institute for Tropical 

Agriculture. In Central Africa, activities of these research institutions integrate management of 

information to farmers for the application of sustainable agriculture. 

 

The meteorological and hydrological services of DRC also partake in this project. These services have 

great experience in co-design and provision of weather information to farmers across the country. 
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1.2 Target user sector 

 

In Cameroon, at least 70 per cent of the labour force is employed in the agricultural sector, which makes 

for about 30 per cent of the country’s gross domestic product. Agriculture also accounts for at least 40 

per cent of total foreign exchange earning constituted of perennial export crops: banana, cacoa, coffee, 

cotton, palm oil, timber and tobacco (Gbetnkom and Khan, 2002; Binam et al., 2004). This position has 

been maintained since the 1970s by neighbouring Central African Republic, Chad, Equatorial Guinea, 

Gabon, and the Republic of Congo. The crops are mainly maize, plantain, potatoes, bell peppers, carrots, 

onion and tomato. In this way, Nkendah (2010) concluded that Cameroon was the leading trading partner 

in the Economic and Monetary Community of Central African countries even if 96 per cent of this trade 

was informal and constituted agricultural and horticultural commodities. 

 

In the Democratic Republic of Congo, 70 per cent of the population does not have access to good and 

sufficient food yet the country has a huge potential for agricultural development.  The principal crops in 

the country are cassava, maize, rice (MAPE, 2009). Rubber, cacao and palm oil production has been 

growing since the governmental institution in charge of agriculture has granted large areas of land to 

agro-industries. 

 

The report is organized as follows. An overview of agroecological context in Central Africa is the aim 

of section 2. Section 3 presents the type of climate information need for Central Africa, and the related 

metrics. Global climate model (GCM) prediction database and methods used to assess their accuracy to 

represent metrics are presented in section 4. In section 5, the subset of GCM forecasts used to assess the 

accuracy of forecasts to capture onset date and dry spell length over Central Africa is analyzed. Section 

6 ends the report with conclusion and outlooks. 

2 Overview of Agroecological Context in Central Africa 

 

Daily precipitation data used in this study was provided by the Cameroon and DRC national 

meteorological services, which are 30 years of daily rainfall available from 1971 to 2000. For Cameroon, 

10 meteorological stations in the country’s five agroecological zones were used (see figure 1, right). For 

DRC, daily precipitation data came from 11 of the country’s 24 stations. It was very important that all 

agricultural meteorological data be carefully scrutinized. Quality control was done according to 

Wijngaard et al. (2003) WMO-TD No. 1236 (WMO, 2004a) and following the Guide to Climatological 

Practices (WMO, 1983). When a value was unreasonable, it was corrected immediately. After being 

scrutinized, metadata were needed. Though, these details and history of local conditions, and 

instrumentation, operational, data processing and other factors relevant to the observation process (WMO 

2003a, 2003b, 2004a) are missing or often incomplete.  

2.1 Climatology of selected stations’ observations 
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Cameroon 

 

In Cameroon, observation data originate from stations in the following agroecological zones across the 

country: 

 

- The northern Sudano-Sahelian zone encompasses the country’s northernmost regions. The region 

is characterized by yearly total rainfall ranging from 500 to 1,000 mm with only one modal rainy 

season. The region includes Maroua and Garoua meteorological stations. Less than 10 per cent 

of missing data was found and filled with those of neighbouring stations such as Yagoua and 

Tchollire. The region is characterized by unimodal annual cycle of rainfall (figure 2). The peak 
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of rainy season is commonly recorded in August. Climatic constraints over here contribute largely 

to the fluctuation of sowing dates.  

 

Figure2 

Climatology (1971-2000) of annual cycle of rainfall at meteorological observation stations in 

Cameroon 
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The Central Adamawa Plateau includes the Adamawa Highlands, parts of eastern and central regions, 

with mean annual rainfall approximating 1,500 mm/year. It hosts the Ngaoundéré meteorological station 

(figure 1). The rainy season spreads over the year with a higher amount of rainfall compared with the 

northern Sudano-Sahelian zone. The Adamawa Plateau’s transitional soil is fertile and cultivated with 

maize and cotton, while tightly limited by protected pastoral areas. Here also, less than 08% of missing 

data were found and filled with those of Tibati. The humid southern tropical forest zone has the highest 

yearly average rainfall, approaching 2,000 mm. A bi-modal rainfall regime and two dry seasons 

characterize the zone, which incorporates the Bafia and Yokadouma meteorological stations. Less than 

5 per cent was filled with data from Yaoundé and Abong-Mbang. The association of food crops with 

modest agro-industrial activity in palm oil, coffee and cocoa contribute noticeably to deforestation. 

 

- The Atlantic Ocean coastline is the wettest of the zones, receiving about 4,000 to 11,000 mm of 

annual rainfall. This is due to the year-round high content of relative humidity. The zone hosts the 

Douala, Tiko and Kribi meteorological stations (see figure 1). Just few data were missing here. The most 

best agro-industrial farms are in this coastal belt, supporting rubber trees, palm oil, banana, and many 

other cash or food crops. 

 

- The Western Highlands, which is the coolest area in the country, is still fairly moist to the north of the 

forest due to the mountain chain that brings increased rainfall to the towns of Koundja, Bafoussam and 

Bamenda, while dominated by bimodal annual cycle of rainfall (see figure 2). These towns are served by 

meteorological stations (see figure 1). Very little missing data was found at these stations. Soil fertility 

varies with the terrain and that is why different types of cultivation are applied in double annual cycles, 

combining perennial culture like coffee and fruits trees, rice, tea and tobacco. 

 

Democratic Republic of Congo 

 

DRC data used are daily precipitation records from 11 of the 24 stations spread across the vast country. 

The mountainous climatic zone in the north hosts the Bunia meteorological station (see figure 1). Annual 

precipitation exceeds 1,800 mm in the north-east in which Bunia lies, with nine months of rainfall from 

mid-December to mid- or end of February (see figure 3). Butembo (figure 1), also in the north-east where 

climatic conditions are typically equatorial, experiences two rainy seasons (March to May, and 

September to November) (see figure 3) and two relatively dry seasons from June to July and from mid-

December to mid-February. So, the dry season covers about two months, while the remaining 10 months 

are dominated by 9 months of rain. The eastern city of Goma (figure 1) receives 1,250 mm of rain per 

year, even though these are not plentiful from mid-June to mid-August.  The station in the north-western 

records annual rainfall of 1,600 to 2,000 mm.  

 

For stations in the south-western part of the country such as Bandundu (figure 1), rainfall still resembles 

the equatorial type with 1,500 to 2,000 mm per year. There are profusions August to May (figure 3), and 

much more in early season from September to December. June and July form the dry season. Rainfall in 
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Kinshasa, the nation’s capital, is heavy from mid-September to mid-May,  

 

Figure 3 

Annual rainfall cycles across DRC (1971-2000) 
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With an average annual volume of 1,529 mm, Matadi and Boma are in the rainiest region of the country. 

The climate characteristic in this region is that it rains progressive less as one moves from the coastal 

belt inland toward the east. The dry season here is longer, from May to November, with another short 

and sharp dry season in February. This is a region with an inter-annual variation between 900 and 1,500 

mm. Farming is concentrated between November and May. 

Over the south-east around Kananga, the annual average rainfall is about 1,500 mm, and it generally 

presents well-marked rainy seasons running from August to December and from January to April, with 

a dry period in February, and from May to July. Lubumbashi’s dry season starts between May and mid-

October and a rainy period stretching more than six months. The rainfall total is about 1,200 mm per 

year, which peaks December to February. 

2.2 Agricultural calendar 

 

The project aims to deliver needed climate information to farmers in Central Africa that would help them 

plan their activities, efficiently.  The date to start growing crops is vital information farmers need for 

them to gain maximum harvest yields. 

 

For Cameroonian stations, a south-to-north positive gradient can be determined from the start dates of 

the agricultural season. This has been identified as March for most of the southern localities (except the 

stations of Bafia, see figure 4); April for the central part of the country (including the Adamawa region 

represented by the Ngaoundéré meteorological station); and June for the northern stations that include 

Garoua and Maroua.  

 

The Democratic Republic of the Congo’s (DRC) growing seasons are in three segments: A, B and C. 

Some areas have two or three growing seasons (see table 1). Refer to figure 1 for the country’s 

meteorological observation stations. 

 

 Table 1.   

Growing season for different regions of DRC  

 

Province Season A Season B Season C 

Kinshasa October/November February/March June/July 

Bandundu, Kananga October/December March/May  

Goma, Butembo March/April September/  

Mbandaka/Bunia March/April October  

Lubumbashi November/December March/April May/August 

 



18 

 

The DRC has huge agricultural potential. Its climate is warm equatorial, humid in the central axis of the 

country, and increasingly tropical the farther away from the equator. The rainy season lasts 2 to 9 months 

a year depending on the region, and supports two types of growing seasons. 

 

- Method in two cropping seasons: The long rainy season A allows for two annual crops without the need 

for irrigation. Season B represents the short rains. Both seasons occur in the humid equatorial areas where 

the longer rainy season is interrupted by a short dry spell; and in an area with two short but heavy rainy 

seasons, and two long dry seasons. 

 

- Method in three growing seasons: The other situation is on of growing seasons A, B and C. Seasons A 

and B are during the period when crops are rainfed. Growing season C requires irrigation. All three 

cropping seasons are practiced in wet and dry tropical areas; there two long and short rainy seasons with 

a longer dry season. 

2.3 Main crops 

 

Cameroon is considered as a granary of Central Africa. The country is divided into five agroecological 

zones. The national adaptation plan to climate change has provided a list of crops that could be grown 

per agroecological zone see table 2. 

 

Table 2  

Agroecological zones of Cameroon and corresponding crops 

 

Agroecological 

Zones 

Rainfall and Temperature 

(Annual Value) 
Crops 

Sudano-Sahel 
 Rainfall: 400-1,200 mm 

 Temperature: from 28°C to 35°C 

Sorghum, cowpeas, millet, maize, 

rice, vegetable crops, melon, 

vegetable, cotton. 

High Guinea 

Savannah 

 Rainfall:  1,500 mm with 150 rainy 

days and 5 dry days per year 

 Temperature: 25°C to 28°C 

Peanuts, rice, maize, cassava 

sweet potato, yam, cocoyam 

Western Highland 

 Rainfall:  1,500-2,000 mm with  

180 rainy days and 4-5 dry months 

 Temperature: 22°C to 25°C 

maize, rice, taro tubers, cocoyam 

cassava, palm oil, tree, citrus, arabica 

and robusta coffee, tea, cocoa 

Humid forest with 

bimodal rainfall 

 Rainfall:  1,500-2,000 mm in two 

distinct wet seasons and 3 dry months  

 Temperature: 24°C to 26°C 

Sugar cane, plantain, cassava, palm oil, 

peanut, cocoyam, yam, leaf vegetable, 

condiments, robusta coffee, tobacco, 

rubber, cocoa 

Humid forest with  Rainfall:  2,500 to 9,000 mm with Cocoa, coffee, palm oil, vegetable 
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unimodal rainfall unimodal Plan and 3 dry months  

 Temperature: 25°C to 27°C (15°C to 

24°C at Mt Cameroon) 

crops, rubber, tea, 

pepper, pineapple, plantain 

Source: MINEPDED (2015) 

 

From table 2, it can be deduced that Cameroon’s climatic diversity enables the country to produce a 

variety of perennial and annual crops.  

 

The Democratic Republic of Congo has three agroecological zones: humid, sub-humid and highland. 

The Food and Agricultural Organization of the United Nations has supported agroecological zone studies 

that have identified the best regions for the production of key perennial crops such as rubber, coffee, 

palm oil, cotton, tobacco; and annual crops such as rice, soya beans, sugar cane, cassava, peanuts, 

plantain, maize, beans, potatoes and wheat. In terms of value, the main agricultural products are cassava, 

plantains, “game meat”, maize mangoes, and mangosteens. The main agricultural exports in terms of 

value are raw tobacco, green coffee, raw centrifugal sugar, wheat bran and natural dry rubber. The main 

agricultural imports in terms of value are wheat, maize, wheat flour, palm oil and chicken meat (UNDP, 

2013). 

 

Table 3  

Agroecological zones in DRC and corresponding crops 

 

Crop Region 
Rainfall and Temperature 

(Annual Value) 
Crops 

 

Bandundu 

 Annual Temperature: 20°C to 

25°C 

 Annual Rainfall: 1,500 to 2,000 

mm/an 

Cassava, maize, rice, carrot, peanut, 

palm tree, gombo, zucchini, 

cucumber, cabbage, tomato, 

aubergine (also called eggplant), 

chili, basal, amaranth and roselle 

 

Bas Congo 

 Annual Temperature: 19°C to 

30° C 

 Annual Rainfall: 1,000 to 1,500 

mm 

Cassava, maize, rice, carrot, 

cucumber, cabbage, tomato, 

aubergine (eggplant), chili, basal, 

amaranth, roselle 

Equateur 

 Annual Temperature: 21°C to 

30° C  

 Annual Rainfall: 1,200 to 1,800 

mm  

 Pantain, cassava, corn, rice, palm, 

yams, amaranth, basal, zucchini, 

pumpkin, peanuts, soybeans and 

cowpea 
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Kasai Occidental and 

Oriental 

(West and East Kasai) 

 Annual Temperature: 24.2°C to 

31.4° C 

 Annual Rainfall: 1,400 to 1,900 

mm 

Maize, cassava, rice, gombo (okra), 

zucchini, pumpkin, aubergine 

(eggplant), chili, tomato, cucumber, 

amaranth, cowpea, and voandzou 

Katanga 

 Annual Temperature: 11.3°C to 

24.6° C 

 Annual Rainfall: 1,150 to 1,568 

mm 

Maize, cassava, gombo (okra), 

zucchini, pumpkin, aubergine 

(eggplant), chili, tomato, cucumber, 

amaranth and roselle 

Kivu Nord & Sud 

(North and South Kivu) 

 Annual Temperature: 1°C to 

19°C  

 Annual Rainfall: 1,000 to 2,000 

mm 

Sweet potato, potato, taro, cassava, 

beans, plantain, headed, cabbage, 

onion, tomato, cucumber, chili and 

wheat 

Maniema 

 Annual Temperature: 18°C to 

26°C  

 Annual Rainfall: 1,300 to 2,300 

mm 

Cassava, rice and palm 

Province Orientale 

(Oriental Province) 

 Annual Temperature: 23.9°C to 

30.1°C  

 Annual Rainfall: 1,400 to 2,000 

mm 

Cassava, plantain, rice, palm, 

taro, sweet potato, potato, bean, 

peanut, soy, tomato, chili, aubergine 

(eggplant), okra, cabbage and 

cowpea 

3 Climate Information Agriculture Needs in Central Africa 

 

In Central Africa, adaptation to climate change is required urgently because agriculture remains the 

main, if not the only, source of income and food security for the rural population.  This means that 

adaptation measures need to focus on climate-related vulnerabilities. Improving the resilience of 

farmers by providing agrometeorological information and capacity-building of key stakeholders in 

agricultural development can enable those engaged in the sector to understand and respond to climate 

risks, profitably. 

3.1 Impact assessment of climate variability on crops 

 

 Agricultural activities across Central Africa are limited to the rainy season. Therefore, any seasonal 

climatic change places severe constraints on farming. Reliable climate information is needed for efficient 

agricultural planning. Providing such information requires assessment of how weather affects fields and 

other agricultural activities. This section aims to present the impact of climate variability on crops in 

Central Africa. 
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 The onset and quantity of rainfall has become highly variable. Some parts of Central Africa 

experience a decrease in annual rainfall and farmers are unable to know when to plant and where 

to find pasture for their animals. Climate variability can lead to massive flooding and land erosion 

in drylands. These situations can worsen when crops are affected by diseases that appear during 

heavy rains, flooding and drought. These conditions have stagnated crop. Information of climate 

constraints faced by farmers in central Africa is assessed, with focus on      

            Cameroon and DRC 

 

Cameroon 

 

Cameroon has been identified (Burke et al., 2009) as one of the countries susceptible to the negative 

effects of climatic variability. This climate phenomenon may lengthen or shorten the dry and rainy 

seasons, the duration of rains, make rains unpredictable, cause floods, or lead to prolong droughts.  For 

example, climate variability has led to the withering of rainfed rice, peanuts and corn, and cocoa trees 

have failed to flower (Bele et al., 2011). At times, some plants may bloom too early. Similarly, with 

variability farmers must delay planting of cotton from 5 to 10 days (Gérardeaux, Sultan et al. 2013). 

Variability can also extend the growing season, expanded range of some insect pests, and cause wind 

damage. The Institute for Agricultural Research for Development of Cameroon has discovered water 

stress on cocoa trees. The stress is that the amount of water the plant transpires is greater than the amount 

it absorbs.  An abnormal loss of flowers, severe attacks by pests and diseases result in a considerable 

drop in yields (Ndoumbe-Nkeng, 2009). 

 

Democratic Republic of the Congo 

 

In DRC, 90 per cent of farmers have already experienced at least one natural climate-related disaster 

(MINECT, 2006). A study in Kisantu shows that drought had caused seeds to shrivel. Moreover, pollen 

and seeds lost their germination capacity. Therefore, the withering of grains and formation of shriveled, 

seedless pods worsened.  Increased heat also leads to poor harvests of cassava, which is the main crop. 

During cassava’s tuber formation when it needs water to mobilize the nutrients, being in suspension, the 

crop is highly sensitive to soil moisture content. The frequency of heavy rainfall has favoured the 

emergence of telluric microorganic gnawing tubers. DRC might face serious problems of nutrition due 

to global change (Liu, Fritz et al. 2008). For this reason, the National Service of Seed (SENASEM) is 

providing new seeds of maize, rice and cassava that can adapt to this climate variability. The banana 

weevil has developed these recent years in Bas-Congo Province’s Luki region, where recent climate 

conditions has favoured the pest’s development as rainfall has increased by 392 mm, temperature by 

1.6°C, and relative humidity by 3 per cent (Ngombo-Vangu, 2007). 

 

3.2 Climate information needs for agriculture 

 

This section aims to identify current climate services information delivery and related tailored products, 
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and suggests a design for such products for Central Africa. 

 

Climate information for agriculture 

 

To improve the availability, quality and use of climate information in the region this information should 

cover different timescales: medium term (from one week to one month) and long term (more than a 

month, including the seasonal timescale). Outputs from surveys show that main climate hazards that 

negatively impact agriculture are heavy and erratic rains, floods, drought, and unpredictable dry spells 

in the rainy season, and rain during the dry season. Other climate stresses are increasing temperatures 

with prolonged dry periods, lengthening and shortening of dry and rainy seasons, strong winds and 

drought (Bele et al, 2013 and 2014; Mukakamari and Cheteu, 2014; Denis J Sonwa et al., 2016). Table 

1 presents recorded climate hazard and related climate information that can help farmers plan to be more 

resilient to variability. 

 

Table 4  

Climate hazards recorded over Central Africa and related climate information 

 

Events that Can Affect 

Agriculture 

Climate Information 

Related to Event 
Climate Information Farmers Need 

Prolonged episode of 

heavy rain 

Number of days of heavy 

rain 

 Onset of rainy season 

 Period of heavy precipitation during the 

rainy season 

 Duration of heavy rain episode 

Prolonged episode of 

drought 

Length of dry spell 

during the rainy season 

 Onset of rainy season 

 Dry spells distribution during the rainy 

season 

 Dry spells duration 

Floods Heavy rain Occurrence of heavy rain 

Pockets of drought in the 

rainy season 

Number of dry spells in 

the rainy season  

 Number of days of drought in rainy season 

 Period of drought in rainy season 

intense of drought Length of dry season Onset and cessation of dry season 

Pockets of rain in the dry 

season 

Occurrence of wet spell 

in dry season 

 Onset of dry season 

 Number of raining days in dry season 

Violent winds Wind speed Occurrence of day with strong wind speed 

Torrential rains in the 

season 
Heavy rainfall 

 Onset of rainy season 

 Occurrence of heavy rainfall 

More intense and longer Number of hot days  Onset of dry season 
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heat spells in the dry 

season 

during the dry season  Occurrence of hot day 

 Length of consecutive hot days 

Shifts in seasons 

 Onset of dry season 

 Cessation of dry season 

 Onset of rainy season 

 Cessation of rainy season 

 Beginning of dry season 

 End of dry season 

 Beginning of rainy season 

 End of rainy season 

Severe frequent drought Occurrence of hot days 

 Onset of dry season 

 Occurrence of very hot days during the 

dry season 

 

This information can form newsletter comments on the state of the atmosphere at the weekly, monthly, 

seasonal, and dekadal timelines.  The type of products specific to the agricultural component of climate 

information are the following: 

 

 Seasonal forecasting, and early and late seasons for varieties of agricultural seeds 

 Weather forecasting, dekadal and the beginning of the season for field preparation 

 Climate Monitoring Bulletin (forecasting and observation humidity, temperature, rainfall, 

extreme events treatment) for pest monitoring 

 Climate Monitoring Bulletin (weekly or dekadal rainfall, observation, for irrigation flowering 

activity  

 Climate Monitoring Bulletin for harvesting, seed storage 

 Maximum water deficit or surplus experienced in any one dekad 

 Total water deficit or requirement at different stages of crop growth 

 Dekadal to seasonal total rainfall forecast 

 Rainy season onset 

 Standardized precipitation index 

 Soil water content 

 Dry spells 

 

Definitely, Cameroon must establish a climate service able to provide information that will enable 

farmers to make better decisions for sustainable agricultural production. Some interactions needed 

between farmers and national meteorological services are presented here: 
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   Awareness of farmers on progress to be made to disseminate weather and climate information    

 to help them make decisions about their activities. Taking farmers into account, national 

meteorological services can design products better suited to farmers’ needs and improve the 

flow of information 

 

 Establish demonstration phases of experience gained elsewhere, to help farmers understand 

current methods used to manage climate and weather risks on the scale of farming in different 

regions. In addition, they contribute to the development of better risk management tools for 

farmers. 

 

Current climate services in Central Africa  

 

In Central Africa, climate information and services are obtained from different sources, mainly national 

meteorological and hydrological services that serve their governments and other users in their respective 

countries. These services maintain observation networks and provide raw data on demand. They often 

provide weather and climate forecasting for one, five, or seven days, and on seasonal timescales. In 

addition, some national meteorological services occasionally provide agrometeorological bulletins.  

 

National meteorological services collaborate with several institutions outside the region for climate 

service deliveries. The World Meteorological Organization, African Centre of Meteorological 

Applications for Development (ACMAD) and AGRHYMET often provide services and training for 

meteorologists of some Central African countries. These organizations help these countries to use 

meteorological forecasts to study the application of the science to various aspects of farming. ACMAD 

encourages the use of meteorological data for development.  Together with AGRHYMET they are main 

providers of climate information through early warnings, severe weather watch and seasonal forecasts 

applicable in agriculture.  

 

ACMAD  transfers weather and climatic knowledge to national meteorological services throughout 

Central Africa.  For example, in addition to the African Climate Watch Bulletin, ACMAD has developed 

Numerical Weather Product analysis, translated the remote sensing meteorological products shared with 

global and regional climatic centres, research establishments and universities.  Alongside climate 

services providing spatial and temporal extreme weather and climate warnings, ACMAD makes 

available a climate risks cartography and climate raw data from remote sensing, as well as developing a 

regional database or archives. ACMAD and AGRHYMET are facilitating a data exchange network 

between WMO, national meteorological services, and international research centres, and are developing 

tools for research and application in agriculture. ACMAD and SMNH  have organized regional climate 

outlook fora to improve climate information products and dissemination. The information is usually 

broadcast by radio, television, newsletters and, in some cases, by email. 

  

National meteorological services use FEWS NET’s material to produce information in support of 
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agriculture. These include: 

● Dekadal (10 days) rainfall estimates  

● Monthly (30 days) rain and dry days, and anomalies 

● Seasonal evapotranspiration anomaly d surface temperature  

● Total precipitable water  

● Drought status monitor tool based on weather and crop conditions (experimental) 

● Standardized precipitation index maps (SPI-Z score) 

● Soil water index 

 

At the national level, communication and counselling skills need to be developed in order to translate the 

atmospheric knowledge of forecasts throughout specific applications and formats that meet the needs of 

particular development sectors, in this case agriculture. This kind of climate service is currently very 

restricted. A few countries, including Cameroon and the Democratic Republic of Congo, strive to issue 

agrometeorological bulletins on a dekadal basis, but the limitation in forecast communication and 

dissemination means end users are unable to get the information. Additionally, information that regional 

climate outlook provide are not in a form that farmers can understand. 

 

Current satellite imagery provided by the African Monitoring of the Environment for Sustainable 

Development project (or updated PUMA2015-MESA) is scrutinized for indications of dust storms so 

that early warnings can be given to farmers to take appropriate precautions. Wind patterns such as the 

north-easterly dry and dusty Harmattan is monitored because it carries germs that can (mechanically or 

physiologically) attack certain crops like cocoa and cassava. However, some additional information like 

rainfall estimates, vegetation index and ancillary data on temperature and wind need to be refined to 

target requirements at each local level.  

 

3.3 Capabilities of national meteorological and hydrological services to deliver downscaled 

climate information at S2S timescale 

 

This section presents the following characteristics of meteorological services in Cameroon and DRC. 

 

● Evaluation of the current agrometeorological observation network 

● Evaluation of current agrometeorological forecasts at S2S timescale 

● Evaluation of material resources and capacity-building useful to the agricultural   

      sector    

 

3.3.1 Cameroon Meteorological Service 

 

The Cameroon meteorological service is known as Direction de la Météorologie Nationale, and was 
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founded before 1962. Since then, it has been under supervision of the Ministry of Transport. The Met 

service is staffed by about 64 individuals for the whole country; at least 100 more engineers, technicians 

and observers will be recruited in the next decade.   The meteorological service engages in eight activities. 

Of these, agrometeorology furnishes climatological information and forecasts for the agriculture 

community, which includes Government agencies, planning authorities, and academia. The service is 

supposed to issue climate reports on a regular basis and, on special occasions, develop different 

specialized agricultural forecasts like evapotranspiration, floods and drought warnings, in association 

with the Forecasting Unit.  

 

The national meteorological network comprises about 5 synoptic stations, 20 automatic weather stations, 

34 climatic stations and about 200 rain gauges. For field observations being collected and transmitted 

efficiently, the Observation Network should be operated and maintained continuously in all subdivisions. 

Presently, agricultural observations are made only by 10 automated weather stations in addition to the 

rainfall measurements from the 200 rain gauge stations. Some of these stations are not operating at world 

meteorological standard because they lack appropriate instruments and qualified observers. Many 

synoptic agrometeorological stations have been closed, while only 10 per cent of information is able to 

reach the national meteorological centre monthly for processing because of difficulties in transmission. 

Therefore, only data that the ASECNA airport facilities provides can attain the international transmission 

network  standard.   

 

Even though the Cameroon Meteorological Service has the legal mandate to provide nationwide services 

to the agricultural sector, other institutions can develop their own climate information amenities at local 

level. For example, the Ministry of Agriculture and Rural Development (MINADER), the Cameroon 

Development Cooperation the Institute of Research in Agriculture and Development (IRAD) maintain 

their own meteorological stations, which enable them to monitor specific parameters (rainfall, 

temperature and humidity). Yet they rely on the national meteorological service for timely tailored and 

downscaled forecast at subseasonal to seasonal timescales.   

 

At times, national Met services issue seasonal, monthly and dekadal forecast bulletins to the Ministry of 

Agriculture and Rural Development’s Department of Agriculture Statistics and Surveys for information 

and early warnings. But it is really difficult to know if these types of climate information are useful, since 

there is no feedback from end users in order to meet their needs. During the first meeting launching the 

National Framework for Climate Services, it was recognized that few frameworks exist that can 

institutionalize interactions between the National Framework, agricultural technicians and local users for 

the co-production of tailored climate services. On the ground, exceptional climate information that is not 

yet produced at S2S timescales could be undertaken. These are, for example, the onset and cessation of 

rains, dekadal and monthly forecast of dry spells, and early warning of severe weather. 

  

Consequently, national meteorological services are rarely, if ever, prepared for these specific events. No 

precise information is issued except routine 10-day agrometeorological bulletins. This deprives 
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policymakers of the ability to decide on suitable measures to mitigate or adapt to adverse climate 

phenomenon. To fulfill its responsibility, national meteorological services must be given the sufficient 

qualified staff, technology and telecommunication facilities for climate monitoring, forecasting and 

research, alongside with capacity-building. They must also be responsible for providing climate 

information to agrometeorological users. This would be the stepping stone to modernizing these services, 

which would enable them to contribute to sustainable development once fully equipped with modern 

instruments and automatic weather stations. Accordingly, the services should be responsible for 

gathering, assessing, archiving and sharing lessons about all weather or climate impacts. Moreover, 

because impacts are cross-sectorial, the services must be empowered to deal with disaster risk reduction 

management in agriculture and other related development sectors. 

 

Routine climatological and agrometeorological services including queries required as evidence in a court 

law and consultation advisories. Among climatological and agrometeorological routine publications 

there are the following: 

 

 Regular dekadal (10 days) – climate bulletins, Agromet. Bulletin 

 Monthly – rainfall bulletin, Agromet. Summaries to agricultural journals 

 Seasonal forecast – ACMAD rainfall report. A climatological report. 

    

Cameroon Meteorological Department strives as far as possible to provide tailored products for that 

requested by the following sectors:  

 

● Governmental authorities and public institutions (Ministry of Agriculture) 

● General public 

● Media 

● Commercial and industrial sectors 

● Universities and academic institutions 

● Agricultural Growers’ Organization 

● Agricultural settlements (not yet operational) 

● Small farmers  

● Faculties of Agriculture and Agricultural engineering, research institutes (IRAD) & regional 

research and developments (CARBAP) units 

● Insurance Fund for Natural Damage in Agriculture 

● Agricultural insurance companies 

● Agricultural assessors 

 

Planning and public policies as well as the incorporation of information at S2S science-based forecasts 

are necessary to achieve better management of risks related to climate variability and change, in order to 

promote adaptation at all levels. Research, modelling and prediction at the S2S timeline of the thermal 

comfort of main crops, in addition to the development of new index (ENSO), as well as information on 



28 

 

the dry and wet periods are valuable. Accordingly, there is a need for communication expertise, training 

in downscaling “regional-specific” S2S forecasts, roving seminars, and computing resources in order to 

communicate timely and reliable forecast. Henceforth, when people adopt a “wait and see” attitude, 

accurate information of these meteorological services can influence the decision governments take on 

the agricultural sector. 

 

3.3.2 METTELSAT (National Meteorological Service of the DRC) 

 

DRC’s national weather service has been known since 1991 as the National Agency of Meteorology and 

Remote Sensing by Satellite (METTELSAT). The service was created in the 1930s under the Department 

of Agriculture and became the National Meteorological Institute to provide meteorological and 

climatological services through forecasts for the safety of air navigation. Additionally, with agricultural 

services and research centres, the service published climatological journal directories.  

 

METTELSAT’s 750 workforce is aging; 73 per cent of employees are nearing retirement, which 

forewarns of a looming critical skills shortage. Current staffs include 37 engineers (meteorologists, 

hydrologists and agrometeorologists), 143 meteorological technicians, and an environmentalist. 

 

The service established a network of 60 weather observation stations in 1933. After Independence in1960 

the weather service had 126 major synoptic observation stations, and 900 rainfalls stations which no 

longer exist today. Recently, 22 automatic weather stations were installed but four are non-functional 

due to lack of maintenance. No altitude network station is effective and only 10 stations store data from 

1960 to 2014. The remaining stations have a timeline of data from 40 to 90 years, with gaps. All the data 

available are in hard copy, and sometimes dating from 1945 to 2017.   

 

The data processing system organized within METTELSAT is based on raw data. Quality control is 

exercised by corrections of transcription errors when entering or while watching data needed for a study, 

or to produce weather and climate forecasts. The service provides daily weather bulletins for 24 hours, 

the dekadal bulletin containing information on weather and climate conditions observed over past 10 

days, a rainfall prediction for the 10 coming days, and the seasonal climate forecasting newsletter 

produced monthly for a three-month season.  

 

The dekadal bulletin was established in 2012, through the National Climate Change Adaptation 

Programme to implement a project of adapting the agriculture and food security sector (PANA/ASA 

project) to climate change. The PANA-ASA project comes as a response to vulnerability, increasingly 

apparent in the agricultural sector due to climate change challenges in the country. This vulnerability 

mainly affects rural areas, where agriculture remains the mainstay for incomes and food security. The 

project contributed to improve resilience through the provision of technological packages, 

agrometeorological information, and capacity-building of key stakeholders in agricultural development, 

enabling them to understand, analyze and respond to climate risks adequately. For weather information, 
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the project has set up a hydro-agroclimatic advisory network with the following activities: 

● Alignment and analysis of existing agroclimatic data 

● Acquisition or rehabilitation of infrastructure monitoring 

● Agrometeorological observations 

● Development of agricultural calendars 

● Early warning 

 

The project involved METTELSAT, which upgraded the skills of personnel at agrometeorological 

stations of the Environmental Institute for Agricultural Research (INERA), and helped local communities 

to receive and use agrometeorological information in planning their farming. METTELSAT supported 

the INERA research centre at Ngandajika (Kasai Oriental) and at Kipopo (Katanga), Kiyaka (Bandundu) 

and Gimbi (Bas Congo) to carry out the following: 

● Establish a standardized database (data encryption, file format, software for the analysis and 

exploitation of existing data and harvest)  

● Treat and use weather data recorded for several decades with INERA agrometeorological stations  

● Develop weather and climate forecasting (choice and reliability of the model) 

● Carry out meteorological observations 

● Maintain recording equipment meteorological data 

● Establish and manage an early warning system 

● Contribute to the development of a dynamic agricultural calendar in each region with the project 

 

Disseminated data are often weather forecasts, sent by email to media establishments and other interested 

parties. 

 

Despite the national meteorological service’s infrastructure, operations and staff difficulties to meet 

WMO standards and apply the Global Framework Recommendations, the Climatology Unit is able to 

provide agrometeorological information needed by farmers. However, it is important that the service 

strengthens its ability to implement the following: 

 

 A dense network of observation stations 

 Another network of stations where agricultural activities 

 Establish partnership with public and private institutions with weather stations and post rainfall 

 Establish a weather and climate database with information from the partners 

 Increase personal recruitment 

 Set up an effective communications network to transmit data and information 

 Set up an agrometeorological assistance programme on agricultural production to provide the 

following information: 

 

o Meteorological conditions, climate and dekadal forecasting 
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o Seasonal prediction 

o Early warning of climatic hazards 

o Insolation 

o Evapotranspiration 

o Bird and insect migration monitoring  

o Agricultural production forecasting 

o Monitoring of cultivated areas and managed valleys 

o Mapping of surface water resources and depths 

4 Data and Methodology 

4.1 Data 

4.1.1 Observation data 

 

The Cameroonian and DRC national Met services provided daily precipitation data used in this study. It 

consisted of daily rainfall data from 1971 to 2000. Ten meteorological stations in the five agroecological 

zones across the country were used for Cameroon. For the DRC, daily precipitation data from 10 stations 

across the country were used. Quality control was applied on these data (Wijngaard et al. 2003; WMO, 

2004a; WMO, 1983). 

4.1.2 Model data  

 

Description 

 

The S2S data were provided by the Australian Bureau of Meteorology (BoM), the Chinese 

Meteorological Administration (CMA), Environment and Climate Change Canada (ECCC), the 

European Centre for Medium-Range Weather Forecast (ECMWF), the Hydro Meteorological Centre of 

Russia (HMCR), the Institute of Atmospheric Sciences and Climate (ISAC-CNR), the Japan 

Meteorological Agency (JMA), the Korea Meteorological Administration (KMA)1, the French National 

Centre of Meteorology (Meteo-France/CNRM), the United States National Centers for Environmental 

Prediction (NCEP), and the United Kingdom Met Office (UKMO).  

 

S2S database archives include near real-time ensemble forecasts and hindcast (reforecasts) up to 60 days 

from 11 centres (Vitart et al., 2016).  Reforecasts (or hindcasts) were run using the current version of the 

forecast model but for past several years on the same (or nearby) calendar day as the forecast. As the 

known (or closely estimated) climate state of these past periods were used to initialized models, hindcasts 

could be used to see how well model output matched observation, and also to calibrate actual forecast.   

 

The frequency of initializing forecast varies from one model to another, and the main characteristics are 

                                                 
1 That of South Korea 
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described in table 6. Some models are run sub-weekly with a large ensemble size (BoM, ECCC, 

ECMWF, HCMR, Institute of Atmospheric Sciences and Climate/ISAC-CNR, JMA). Others like the 

Chinese/CMA, Korean/KMA, the National Centers for Environmental Prediction/NCEP, 

British/UKMO, are run in continuous mode on a daily basis with a small ensemble size. The Météo-

France is the only one with a monthly initiated run. 

 

Table 5  

Main characteristics of the 11 contributions to the S2S database 

 

 

Model 

Time 

range 

(days) 

Hindcast (Reforecast) Forecast 
Ocean 

Coupli

ng Period Init Freq. 
Ens 

size 
Start date 

Init 

Freq. 

Ens 

Size 

BoM 0-62 1981-2013 6/month 33 January 2015 2/week 33 YES 

CMA 0-60 1994-2014 Daily 4 January 2015 daily 4 YES 

ECCC 0-32 1995-2012 weekly 4 January 2016 weekly 21 NO 

ECMWF 0-46 past 

20years 

2/week 11 January 2015 2/week 51 YES 

HMCR 0-61 1985-2010 weekly 10 January 2015 weekly 20 NO 

ISAC-CNR 0-31 1981-2010 Every 5 

days 

1 November 2015 weekly 40 NO 

JMA 0-33 1981-2010 3/month 5 January 2015 2/week 25 NO 

KMA 0-60 1996-2009 4/month 3 Not available daily 4 YES 

Météo-

France 

0-61 1993-2014 2/monthly 15 May 2015 monthly 51 YES 

NCEP 0-44 1999-2010 Day 4 January 2015 daily 16 YES 

UKMO 0-60 1996-2009 4/month 3 December 2015 daily 4 YES 

 

 

The models BoM, CMA, ECMWF, KMA, CNRM, NCEP and UKMO have an atmosphere component 
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coupled to an ocean, while others use the combination of persistence of initial conditions and climatology 

to define the oceanic and ice boundary conditions. The forecast time range varies from 31 to 62 days and 

is available with a 3-week delay. The ensemble prediction systems have a combined total of 269 

members. Until now, KMA data has not been available, so only 10 models can be found in the S2S data 

portal. Table 6 shows main models characteristics. 

 

Model selection 

 

Two types of evaluation have been done: hindcast and forecast analysis. Criteria for model selection 

differ for each of these analyses. For hindcast evaluation, the following criteria were applied: 

 

● First, given the official sowing calendar of selected countries in this project (figure 1). It is 

necessary to choose the models whose forecasts start in January. This criterion eliminates the 

GCM’s predictions of ISAC-CNR, KMA, Météo-France and UKMO 

● Second, the criterion for determining the start of the growing season requires at least 30 days of 

forecasts. To fit with the S2S timescale, forecast must be done at least 14 days before the target 

period of onset of rainy season. Then, the lead time of the selected model must be at least 44 days. 

This criterion eliminates the models ECCC and JMA 

 

Based on these criteria, five models were selected: BoM, CMA, ECMWF, HMCR and NCEP. 

The NCEP model has shortest common period (only two years; see table 7) with observation, and HMCR 

is initialized only once a week. Because of these shortcomings, the two models were discarded from the 

hindcast analysis.  

 

For forecast evaluation, only models with start dates in January 2015 (table 5) were selected. Therefore, 

forecasts of the following models were evaluated: BoM, CMA, ECMWF, HMCR and NCEP. 

 

Table 6  

Length in day of each model run and overlap periods between  

observations and GCM forecasts 

 

Model Name Common Period Number of Years 

BoM 1981-2000 20 

CMA 1994-2000 7 

ECMWF 1995-2000 6 

NCEP 1999-2000 2 
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HCMR 1985-2000 15 

Models data collection 

 

The climatological data were used to determine the most likely growing start season (hereafter target 

period) in each station. Model data were extracted at each grid point nearest each station and from 

forecasts for 2, 3 and 4 weeks before the target period. We choose at least 2 weeks because subseasonal 

to seasonal time ranges are defined between 2-week and 3-month scales. 

4.2 Methodology 

 

4.2.1 Overview 

 

Central African farmers are deeply concerned about knowing the beginning of the rainy season and when 

there will be no rain during that period. Then two parameters appear crucial to evaluate the usefulness of 

GCMs forecasts for regional agriculture: onset of rainy season and the duration of dry spells (see table 

4). The length of dry spells can be defined as the number of consecutive days with precipitation below a 

given threshold, preceded and followed by at least one day with rainfall exceeding this threshold.  

Generally, the rainfall threshold used to distinguish between wet or dry days is the resolution of the 

pluviometer (0.1 mm/day; Lana et al, 2012).  

 

It is important to differentiate between rainfall onset date and onset date of growing season. Rainfall 

onset date is when the rains start over an area with the possibility of short or long breaks; the onset date 

of the growing season marks the beginning of meaningful rains with fewer breaks that can hinder the 

growth of specific crops or seed. Hereafter, focus will be on the onset date of growing season. 

4.2.2 Detection of agrometeorological metrics 

 

4.2.2.1 Onset date determination 

 

In Central Africa, the strong spatial heterogeneity of rainfall regime marks the official start of the growing 

season to be dependent on local criteria. Thus, in Cameroon the onset date of growing season is set when 

20 mm of precipitation is recorded with no more than 5 consecutive dry days within the next 30 days. In 

DRC, growing season starts when 20 mm is registered and followed by an accumulation of at least 10 

mm the next 20 days. Only growing season “A” was investigated for DRC (see table 1).  

 

These criteria were applied for both observation and model databases. For models, skills to detect onset 

date of the growing season were evaluated for various outputs obtained by initializing them at lead times 

of 2, 3 and 4 weeks before the observed onset date. For some models, the dates corresponding to these 

lead times fell nearest to their initialization dates and, logically, were considered as such. Thresholds of 

5 mm, 10 mm and 15 mm were applied on forecasts to detect the onset date in order to explore potential 
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application of bias correction to model forecasts. 

4.2.2.2 Maximum dry spell duration 

 

Dry break (consecutive days with no rain) monitoring is important for several reasons. It contributes to 

assessment of water availability during the critical stage of crop development, and to efficient planning 

of agricultural activities. Daybreak monitoring was vital in dealing with Dry breaks within the three 

months after the start of the growing season. This period includes the duration of the earlier stage of the 

meaningful rainy season for each station. Where Dry break is not harmful to sowing, plants are expected 

to reach maturity. The parameter calculated for the control of this index is the maximum dry spell; that 

is the maximum number of consecutive dry days. 

 

Based on data from observation stations in Cameroon and DRC, estimation of maximum dry spell 

duration was made from the 25th to 90th day (period of 65 days) after the start of the growing season. It 

was not pertinent to examine this parameter 25 days before the start of the season because the criteria 

applied for determining the growing season onset date already imposed favorable conditions to sustain 

plant growth. 

 

For models, this parameter was computed at 2-, 3- and 4-week lead times before the first day of the 

observed dry spell period for each station. An analysis of modelled and observed daily precipitation data 

shows that low rain intensities were overestimated. Consequently, the precipitation threshold below 

which a day is considered dry was set to three different values (0.1 mm, 0.5 mm and 1 mm) and for each 

model against 0.1 mm for observation. 

 

4.2.3 Comparison of forecasts and observations: skill scores 

 

To assess the skill of GCM forecast to represent the onset of the growing season and maximum dry spells 

length over Cameroon and the Democratic Republic of Congo, a verification of forecasts was conducted 

using the following metrics and skills scores: 

 

4.2.3.1 Computing Standardized Anomaly Index (SAI) 

The index is computed by subtracting the long-term mean to daily rainfall amount and dividing by the 

standard deviation for each station. It is helpful for a quick look of model biases to compare this index 

computed from observation to that from model databases (here hindcasts). The computation of the SAI 

for models was done using rainfall means and standard deviation using observations data. However, 

using arithmetic means to compute this index may lead to artificial bias value. This is because of 

dispersion of the growing season onset date due to some occurrence of too early and late onset dates. Lo 

et al. (2007) have pointed out this issue. They proposed to use “trimmed” mean, which is based on the 

removal of extremely earliest and latest onset dates. Here, taking advantage of this trimmed mean we 

proceeded as follow: (1) sorting the onset dates’ historical database from earliest to latest; (2) compute 
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the interquartile range (IQR), defined as the difference between the third (Q3) and the first (Q1) quartile; 

and (3) compute the arithmetic mean and the standard deviation (rounded to the next integers) with the 

onset date whose values encompassed the interval [𝑄1 − 0.25 × 𝐼𝑄𝑅; 𝑄3 + 0.25 × 𝐼𝑄𝑅]. 

4.2.3.2 Mean biases 

 

The mean bias helps to answer the question: what is the average forecast error? The mean bias gives a 

measure of systematic error but does not provide information neither on the magnitude of the errors nor 

the matching between forecasts and observations. With values ranging from minus infinity to plus 

infinity, the perfect score is zero. It is possible to get a perfect score with a bad forecast if there are 

compensating errors. 

4.2.3.3 Skills scores 

 

These are based on a dichotomous method: “yes, an event will occur”, or “no, the event will not occur” 

based on a contingency table. This table contains frequency of “yes” and “no” in forecasts and 

observations. The four combinations of forecasts (yes or no) and observations (yes or no), called the joint 

distribution, are presented in table 7. 

 

Table 7 

Contingency table for forecast of a sequence of binary event (Yes/No) 

 

 Event Observed 

Yes No Marginal Total 

Event Forecast Yes h (Hits) f (False Alarms) h+f 

No m (Misses) c (Correct 

rejections) 

m+c 

Marginal 

Total 

h+m f+c h+f+m+c 

 

Hits: event forecast to occur, and did occur  

Misses: event forecast not to occur, but did occur  

False alarms: event forecast to occur, but did not occur  

Correct rejection: event forecast not to occur, and did not occur 

 

Also called  the Two-by-Two Contingency Table, table 2 represents a binary system where the following 
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outcomes are possible: “a hit”, if an event occurred and a warning was provided (h is the number of hits); 

“a false alarm”, if an event did not occur but a warning was provided (f is the number of false alarms); 

“a miss”, if an event occurred but a warning was not provided (m is the number of misses); and a “correct 

rejection”, if an event did not occur and a warning was not provided (c is the number of correct 

rejections). 

 

Several scores can be computed from this contingency table (see, Wilks 2011; Jolliffe and Stephenson 

2003). In this study, the following scores are used: 

 

Frequency bias defined as:  

 

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝐵𝑖𝑎𝑠 =
𝐻𝑖𝑡𝑠 + 𝐹𝑎𝑙𝑠𝑒𝐴𝑙𝑎𝑟𝑚𝑠

𝐻𝑖𝑡𝑠 + 𝑀𝑖𝑠𝑠𝑒𝑠
 

 

The frequency bias (or bias score) answers the following question: How did the forecast frequency of 

"yes" events compare with the observed frequency of "yes" events? Bias values ranges from 0 to infinity, 

with the perfect score equal to 1. The frequency measures the ratio of the frequency of forecast events to 

the frequency of observed events, indicating whether the forecast system has a tendency to underforecast 

(BIAS < 1) or overforecast (BIAS > 1) an event. It does not measure how well the forecast corresponds 

to the observations, but only measures relative frequencies. 

 

The equitable threat score (ETS) is defined by the following relation: 

 

𝐸𝑇𝑆 =
𝐻𝑖𝑡𝑠−𝐻𝑖𝑡𝑠𝑟𝑎𝑛𝑑𝑜𝑚

(𝐻𝑖𝑡𝑠+𝑀𝑖𝑠𝑠𝑒𝑠+𝐹𝑎𝑙𝑠𝑒𝐴𝑙𝑎𝑟𝑚𝑠−𝐻𝑖𝑡𝑠𝑟𝑎𝑛𝑑𝑜𝑚)
,  

where𝐻𝑖𝑡𝑠𝑟𝑎𝑛𝑑𝑜𝑚 is defined as: 

𝐻𝑖𝑡𝑠𝑟𝑎𝑛𝑑𝑜𝑚 =
(𝐻𝑖𝑡𝑠 + 𝐹𝑎𝑙𝑠𝑒𝐴𝑙𝑎𝑟𝑚𝑠)(𝐻𝑖𝑡𝑠 + 𝑀𝑖𝑠𝑠𝑒𝑠)

(𝐻𝑖𝑡𝑠 + 𝑀𝑖𝑠𝑠𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒𝐴𝑙𝑎𝑟𝑚𝑠 + 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)
 

The threat score answers the following question: how well did the forecast "yes" events 

correspond to the observed "yes" events (accounting for hits due to chance)? It ranges between -1/3 and 

1, which indicates the fringe from no skill to perfect score. As it is easier, for example, to forecast rain 

correctly in a wet rather than a dry climate, the threat score allows for fairer comparison across different 

regimes. However, it is not truly equitable. Rather, it measures the fraction of observed events that are 

correctly predicted, adjusted for the frequency of hits that would be expected to occur simply by random 

chance. Sensitive to hits, it penalizes misses and false alarms in the same way; it does not distinguish the 

source of forecast error, and should be used in combination with at least one other contingency table 

statistic (for example, bias). 
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5 Skills of GCMs Forecast Database to Predict Selected Metrics at S2S Timescales 

 

5.1 Hindcast evaluation 

 

5.1.1 Growing season onset dates 

 

5.1.1.1 Observed onset dates 

 

This section focuses on the major agricultural seasons in Cameroon and DRC (called season “A”).  

 

Figure 4 

Mean observed onset dates of growing season and corresponding standard for selected 

meteorological stations in Cameroon and DRC 

 

 
 

 

In Cameroon mean onset dates of the growing season occur during the first half of the year, with the 

earliest in the southern part (that is 13 March in Kribi) and the latest in the far north (mid-June in Maroua) 

- see figure 4. Spatial propagation of these dates moves northward following displacement of the 

Intertropical Convergence Zone. The magnitude of the inter-annual variability of these dates is correlated 

to their standard deviations (figure 4), of which a careful examination shows no consistent south-north 

pattern as for growing season onset date. It clearly appears that variabilities are predominantly low over 

southern Cameroon (with the least value equals to 12 days) and high in the northern region reaching up 

to 33 days. Determinant factors causing this inhomogeneous variability are probably due to the proximity 

of the southern part of the country to the Atlantic Ocean and diversity of the vegetation cover. 
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In DRC (figure 4, country shaded below), it is noticeable that the onset date of the growing season shows 

a dominance of a north-south positive gradient (with occurrence of onset earlier in the north than in the 

south). Late onset (8 November in Boma, or 5 November in Matadi) mainly occur over the coastal region. 

Except Lubumbashi (with a mean onset date around 4 November), inland stations record earlier onset 

dates (8 September and 14 September in Butembo and Bunia, respectively) as compared with coastal 

stations. The magnitude of the inter-annual variability of onset dates can be appreciated by examining 

their standard deviation (figure 4). Relatively, there is a pattern of increasing variability from the north 

to the south. The lowest variability (standard deviation equals to 8 days) is observed for the northern 

stations whereas the southern stations exhibit highest values (standard deviation equals to 25 days). 

5.1.1.2 Standardized Anomaly Index (SAI) of growing season onsets  

 

Figures 5 and 6 show the standard anomaly index distribution of growing season onset dates (using 20 

mm as a threshold for onset dates determination criteria) for Cameroon and the DRC, respectively. The 

sub-figures in a column represent those for a station and those in a row refer to a lead time (1st, 2nd and 

3rd rows corresponding to 2, 3 and 4 weeks before a target observed onset date at station). For each 

station, the statistics are shown for observations (black boxes) and for the different GCMs, namely BoM 

(red boxes), CMA (green boxes) and ECMWF (blue boxes). Here, the questions asked are how well the 

model outputs capture onset dates derived from station observation data: Is it earlier, later or in normal 

range? Do the biases have a coherent spatial distribution? What is the degree of variation with the lead 

time? In order to assess the biases in hindcast, the index has been computed following Robertson et al. 

(2009), by using the observed precipitation station’s mean and standard deviation.  

 

We have noticed that using 20 mm as a threshold to detect the onset date in hindcasts (figures 5 and 6). 

Only the CMA model succeeds in giving some values of onset dates. This indicates that the 20-mm 

threshold is hardly reached in model databases, and suggests that models tend to underestimate heavy 

rainfall.  A qualitative analysis of figure 5 shows that in Cameroon and for all stations, the distribution 

of forecasted onset dates of the growing season by CMA fall approximately into the observed 

distribution. This suggests that forecast onset dates of growing seasons tend to be in normal range 

compared with observations. This occurs at all lead times, except at the Bafia station at a 4-week lead 

time where CMA shows an earlier forecast onset date.   

 

Figure 5 

Standardized anomaly index for observations and models  

at Cameroon’s stations  

 

Box plots of standardized anomaly index for observations are in black and models  

BoM, red; CMA, green; and ECMWF, blue. The name of each station is indicated at the top of each 

column. 
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Standardized anomaly indexes are produced using 30 years (1971-2000) precipitation data for 

observations. For models, the time period used is presented in table 6. Upper, middle and bottom 

panels are for 2-, 3- and 4-week lead times respectively. The rainfall statistic presented here is rainfall 

onset date using the 20-mm threshold.  Boxes denote the median and interquartile range (IQR). 

Whiskers extend 1.5 IQR from box ends. 

 

In the DRC (see figure 6) and for the same threshold, only CMA shows some skills to detect onset date 

of growing season at Bunia and Butembo. CMA forecasts onset date earlier compared with observation 

at all lead times, except in Bunia at a two-week lead time where the model predicts onset date later. 

Others models fail to capture onset dates at all lead times. These weak skills indicate that models were 
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only able to capture onset dates successfully for very few years.  

 

Figure 6 

Standardized anomaly index for observations and models at DRC’s stations  

 

 
 

 

The capability of models to predict growing season onset dates using the 20-mm threshold lead to 

investigate models’ abilities at lower thresholds was weak. Therefore, supplementary analyses were 

undertaken for each model at the 15-mm, 10-mm, and 5-mm thresholds. Hereafter, in addition of results 

for 20 mm, only those at 5 mm were presented in this section because of more meaningful results obtained 

compared with other thresholds (10 mm and 15 mm).   
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Figures 7 and 8 show forecast onset date distribution for the 5-mm threshold in Cameroon and DRC, 

respectively. Note that the observed onset date distribution in figures 7 and 8 (black boxes) are similar 

to those in figures 5 and 6 (that is estimated with 20 mm threshold).  As expected, in Cameroon and DRC 

the number of onset dates detected by the BoM, CMA and ECMWF models is higher than those obtained 

for the 20-mm threshold (figures 5 and 6). Overall, there is a predominance of negative values of SAI in 

models. This suggests that models tend to forecast onset date early compared with observations. 

However, median values from model outputs and observations data are close, suggesting good skills of 

models to capture onset dates of growing season using 5 mm threshold. This result is valid for all lead 

times.  

 

Figure 7 

Standardized anomaly index for observations and models at Cameroon’s stations at the 5-mm 

threshold 

 



42 

 

 
 

 

In Cameroon (figure 7) and for a 2-week lead time, observations are less skewed than models, with 

their medians mostly centrally located in the IQR. At 3-week lead time, the models tend to be more 

negatively skewed given that their medians are more positioned in the upper side of IQR than those 

from observations. As for the 4-week lead time, almost all models show negative skew. 

 

Figure 8  

Standardized anomaly index for observations and models at DRC’s stations at the 5-mm 

threshold 
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In the DRC (figure 8), for all lead times, observations are less skewed than models. At 2-week lead time, 

compared with observations, all models display negative skew. At 3- and 4-week lead time, there is no 

constancy in skew trends because for the same model they are either negative, positive or null in different 

stations. In general, observations are less skewed than models and the tails of their boxplots are longer. 

 

A striking feature of Cameroon is the trend to negative values of forecast SAI with 2- to 4-week lead 

time (figure 7). This is also recorded in DRC (figure 8). This may suggest that models tend to forecast 

an earlier onset date of growing season with increasing lead time. Another striking feature is the low skill 

of ECMWF and CMA to capture the onset date of the growing season at several station and lead times 

compared with BoM. But skills are lowest for ECMWF. This may be related to the short period of model 

data used for assessment of SAI. Only six years (1995 through 2000) forecast data from ECMWF and 
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seven years (1994 through 2000) for CMA was used (see table 6) against 20 years for the BoM model. 

However, lowest skill of ECMWF may suggest that on model sample size there are strong biases in 

model physics. 

 

A high skew in models compared with observation indicates that there are more extreme forecast onset 

dates of growing season compared with observations. This suggest that onset dates of the growing season 

occur too early (positively skewed) or later (negatively skewed) in forecasts compared with observations. 

5.1.1.3 Models’ mean biases 

 

Figure 9 shows the mean bias (for the models BoM, CMA and ECMWF) sequences as a function of lead 

time across Cameroon (figure 9a, b; left panel) and the DRC (figure 9a, b; right panel), respectively.  

 

Figure 9 

S2S database onset date forecast mean biases as function of lead time and models 

for Cameroon and DRC at selected stations   

 

For each column, upper panel (figure 9a) and lower panel (figure 9b) present results using 20 mm and 5 

mm thresholds, respectively. 

 

                                

 

 

 

 

 

 

 

 

 

                                      Cameroon                                                                        DRC   
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(a) 

  
(b) 

 

Stations are represented on a vertical axis and lead times on the horizontal. Blank areas indicate that the 

model was unable to detect occurrence of onset date for the defined threshold. Negative values (blue 

shaded) indicate early onset detection in models, while positive values (red shades) designate later onset 

detection as compared with observed dates. 

 

Considering the mean biases for 20 mm threshold (figure 9a) over Cameroon (figure 9a, left panel), BoM 

predicts earlier onset going from moderate to too early onset dates as the lead time increases. BoM 

presents the same feature across DRC stations (figure 9a, right panel), except at Bunia where forecast 

values move from late to too early with increasing lead time. For a 2-week lead time, the BoM model 

predicts onset dates with approximately one week in advance on Cameroon and the DRC, except for the 

Bunia station where the model predicts onset with a delay of approximately one week.  

 

For the CMA forecast values over Cameroon and DRC, bias values range from later to early as lead time 

increases. For a 2-week lead time, the CMA model foresees onset dates with a delay ranging between 3 

and 12 days. For 3- and 4-week lead times, the onsets provided by the models are generally in advance. 

It was found that the biases are greater as contrasted to that of 2 weeks. ECMWF clearly shows bad skill 

at capturing growing season onset dates, except at the Tiko (Cameroon) and Butembo (DRC) stations. 
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At Tiko, the bias values show a change from “moderately late” to earlier onset dates as the lead time 

increases. In Butembo, the bias shows earlier onset dates which are more pronounced with increasing 

lead time.  

 

For the 5-mm threshold (figure 9b), there is less blank area compared with the 20-mm threshold. This 

suggests that, in this case, all models succeeded in capturing the onset dates. The predominance of 

negative bias values indicates a general tendency for models to forecast earlier onset dates. This is well 

captured by the BoM and CMA models (figure 9b). These negative biases strengthen with increasing 

lead time, with earlier onsets ranging from about 3 days at a 2-week lead, to 18 days at a 4-week lead. 

This indicates that the longer the lead time, the less the quality of the forecast because errors are amplified 

as lead time is farther away from the target date. For ECMWF, the mean bias scores depict a tendency 

to forecast late to early onset dates with an increase of lead time. This model forecasts onset dates with 

a delay of 12 days (at a 2-week lead time) to an earlier onset of 3 days (at a 4-week lead time).  

5.1.1.4 Models’ skill scores 

 

The distribution of observed onset dates of the growing season (figures 5 and 6) suggests a classification 

in term of their occurrence according to the mean onset date. Then, observed onset dates of growing 

season were classified into three categories: early, normal and late onset dates. Hereafter, models’ skills 

to detect each of these categories of onset dates are assessed.  

 

Onset skill scores using a 20-mm threshold 

 

Figures 10 and 11 show for each model the results of equitable threat score across stations in Cameroon 

and DRC, respectively. Each score was computed using the 20-mm threshold for each of the three defined 

onset date categories. For Cameroon, analysis (figure 10.b) reveals that for all onset dates categories 

BoM model shows a weak threat score ranging between 0 and 0.1. This occurs at all lead times. For the 

CMA model, except in Kribi (3-week) and in Ngaoundéré (2- and 3-week), the threat score for the early 

category is generally weak. For the normal category, good skill is recorded at Garoua, Ngaoundéré and 

Tiko. CMA also presents good skill at Maroua, Garoua and Tiko for the late category where ETS is great. 

The ECMWF model gives a result only for the Tiko station. This score is very low for “early” category 

at all lead times. But, it is quite high for the normal and late categories at 3-week and 4-week lead times. 

 

Results of frequency bias (figure 10.a) for the BoM model reveals that for the early and late categories 

and at all lead times, this score ranges between 0 and 0.1 indicating an underestimation of the occurrence 

of events of these onset date categories. The frequency bias score is close to 1 for the average category, 

inferring that the “forecast yes” proportion is sensibly equal to that of “observed yes”. CMA’s frequency 

bias results lie between 0 and 0.1 for the early and late categories, while it is near to 1 for the average 

category. The ECMWF model shows results only at Tiko with frequency bias values between 0 and 0.1 

for the early category, and close to 1 for the average as well as late categories. Broadly, models show 
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good skills to forecast average category of onset dates over Cameroon, with a higher frequency bias at a 

large number of stations for the CMA model. 

 

Figure 10 

S2S database (BoM, CMA and ECMWF models) skills score for the categorical onset date  

forecast  

 

For each panel, frequency bias and equitable threat score are displayed as a function of lead time. Scores 

are for the 20-mm threshold at Cameroon’s selected stations whose names are on the left side of the 

figures). 

 

 

  

(a) (b) 

 

Figure 11 presents results of equitable threat scores and frequency bias scores for DRC. Broadly, the 

threat score shows weak skill regardless of models, lead time and onset date categories. Only the Bunia 

station presents a different threat score, approximately equal to 1 for a 2-week lead time. For the CMA 

and BoM models, the threat scores are very close and low across stations except in Bandudu, where the 

score is high and close to 1 for a 2-week lead time. The ECMWF model shows bad skills because only 

the Butembo station was depicted and its score was very low, ranging between 0 and 0.1 for all onset 

date categories. 
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Frequency bias results for the BoM model shows that for all onset date categories and at all lead times 

the score lies between 0 and 0.1, portraying an underforecast of the onset date category (figure 11, left 

panel). At the Bunia, Kinshasa-Bindza and Kananga stations, frequency bias is close to 1 for the average 

category and for 2- and 3-week lead times. This infers that the “forecast yes” proportion is quite equal to 

that of the “observed yes”. The CMA model exhibits low frequency bias values ranging between 0 and 

0.1 for the early category, and close to 1 for both “average” and the late categories. The ECMWF model 

shows results only at Butembo with a score between 0 and 0.1 for almost all categories. 

 

Figure 11 

S2S database (BoM, CMA and ECMWF models) skills score for the categorical onset date  

Forecast at DRC stations 

 

  

(a) (b) 

Fig.1.  

 

The S2S databases are from the BoM, CMA and ECMWF models, and the skills score for the categorical 

onset date forecast for DRC stations. It appears that equitable threat score generally depicts low values 

for all onset date categories: these are earlier, average and late. However, the CMA model shows higher 

scores than those of BoM, while ECMWF presents the lowest scores. It was found that for the early and 

late categories, the frequency bias score was less than 1. This means that models have a tendency to 

underforecast onset dates for this threshold. 
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Onset skill scores using a 5-mm threshold 

 

As mentioned previously, the underestimation of heavy rainfall by Global climate model forecasts causes 

the failure of models to detect onset dates at the 20-mm threshold. In order to explore potential bias 

correction in models, analyses were made with a 5-mm threshold. The results are presented in figures 12 

and 13 for Cameroon and DRC, respectively. These figures display frequency bias and equitable threat 

scores in figures 10 and 11. 

 

For Cameroon at the 5-mm threshold (figure 12), the equitable threat score (figure 12.b) values of the 

BoM and CMA models are more skillful compared with ECMWF forecasts. BoM display skill for all 

onset categories while CMA shows good skill for earlier and average categories. Over Garoua, 

Ngaoundéré and Tiko, CMA produces high threat scores for the normal category, indicating good skills 

of the model to detect observed onset date of this category. For the late category, CMA exhibits high 

threat score at Maroua, Garoua and Tiko. ECMWF shows skills only at the Tiko station, with weak threat 

scores for the early category at all lead times. However, a high score is obtained for normal and late 

categories at 3- or 4-week lead times. 

 

Figure 12 

S2S database (BoM, CMA and ECMWF models) skills score for the categorical onset date  

forecast at the 5-mm threshold over Cameroon’s selected stations 

 

  
(a) (b) 
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Regarding the frequency bias scores (figure 12.a), values decrease as lead time increases and all models 

seem to depict good skill in the forecast of the near normal (average) onset date category over the whole 

country. Broadly, the BoM model shows better skill at forecasting the observed onset date category 

compared with ECMWF and CMA. Strong deficiencies in CMA and ECMWF forecasts are recorded for 

the early and later onset date categories. However, all models present good skill for detection of the 

observed average onset date category. 

 

Figure 13 presents results for equitable threat scores and frequency bias at the DRC stations. Analysis of 

the threat score values (figure 13.b) show strong model deficiencies for the early onset date category. 

Models exhibits predominance of weak threat scores (between 0 and 0.1) for all onset date categories 

and lead times. 

 

Figure 13.a presents results for DRC’s frequency bias. Overall, models show good skills for average and 

later onset date categories. All models present deficiencies to predict observed early onset date categories 

with frequency bias values ranging from -0.1 to 0. The BoM model captures the occurrence of observed 

average onset date category quite well, with higher scores for Kinshasa-Binza and Lubumbashi. BoM 

also performed well for the late onset date category, except at 4-week lead time for some stations. 

Broadly, performances of CMA and ECMWF for average and late onset date categories are close 

together. Both models capture the occurrence of observed average onset date category quite well, except 

at some stations like Mbandaka and Bunia) for ECMWF at 4-week lead time, whereas for the late onset 

date category CMA and ECMWF present weak skills at many stations for all lead times.   

 

Figure13(a) and (b) 

Frequency bias and threat score at 5 mm threshold over DRC’s selected stations 
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(a) (b) 

  

 

For Cameroon, all models seem to depict well the observed near normal (average) onset date category 

over the whole country. CMA is more skillful compared with ECMWF forecast, even though both 

models show strong deficiencies for the early and later onset date categories. The BoM model displays 

better skill for all onset categories while CMA shows good skill for earlier and average categories.  In 

the DRC, all models are deficient in predicting the observed early onset dates category. For others onset 

date category models show improvement, with highest performance for BoM. Whereas, skills of CMA 

and ECMWF are close together. 

5.1.2 Dry spells lengths: model assessment 

 

5.1.2.1 Mean biases of models 

 

1) Quantitative analysis 

 

Figures 14 (a and b) and 15 (a and b) show the distribution of mean bias of the forecast of dry spells 

lengths (using 0.1 mm and 1 mm) over Cameroon and the DRC, respectively. Each column carries results 

of the forecasts from different centres such as BoM, CMA and ECMWF. Here mean bias is presented as 

a function of station and forecast lead time (2-, 3-, and 4-week on the x-axis). Statistics for each station 

are assessed according to hindcast mean biases (Robertson et al., 2009) and expressed by the means of 

colour bars specified by a bottom legend. The aim of this analysis is to find out how well the models 
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forecast dry spell occurrence by classifying performances into various categories: underestimation, 

normal and overestimation. Therefore, it is possible to sketch the bias spatial distribution alongside the 

variation with lead time.  

Figure.14 

Mean biases of S2S models dry spell lengths (BoM, CMA, ECMWF) as a function of forecast lead 

times for 0.1 and 1 mm thresholds for Cameroon 

 

  
(a) (b) 

 

Figure 15 

Mean biases of S2S models dry spell lengths (BoM, CMA, ECMWF) as a function of forecast lead 

times for 0.1 and 1 mm thresholds over DRC stations 

 

  
(a) (b) 

 

At Cameroonian stations (figure 14.a), results are all negative showing models’ underestimations of dry 

spell lengths at all lead times. The BoM model shows near normal dry spell forecasts (up to 6 days of 

underperformance) at Kribi, Edéa, Tiko, Bamenda, Ngaoundéré, and Garoua at all lead times, while 



53 

 

Maroua appears in this category only at a 2-week lead time. At 3- and 4-week lead times, the model 

forecasts are underestimated in Yokadouma, Bafia and Bafoussam. The CMA model depicts near normal 

forecasts in Kribi, Tiko, Bafoussam, Bamenda, Ngaoundéré, and Garoua for all lead times, while Maroua 

emerges in this batch for just the 2-week lead time. Other forecasts at 3- and 4-week lead times in Maroua 

as well as those in Yokadouma, Edéa and Bafia for all lead times are underestimated. The ECMWF 

model shows near normal forecasts in most stations (Kribi, Edéa, Tiko, Bafoussam, Bamenda, 

Ngaoundéré, and Garoua) at all lead times, while underestimations are registered in Maroua, Bafia and 

Yokadouma. 

 

For the DRC (figure 15.a), results expand from near normal to underestimated forecasts at all lead times, 

but only the Kananga station failed to be detected by CMA and ECMWF. The BoM model forecast 

shows near normal dry spells in most stations (Lubumbashi, Kananga, Kinshasa-djili, Bandundu, 

Butembo and Bandaka) whereas Boma, Matadi, Kinshasa-binza and Bunia come into sight at all lead 

times as stations where dry spell lengths are underestimated. The CMA model portrays a near normal 

forecast category at all lead times in Lubumbashi, Kinshasa-djili, Kinshasa-binza, Bandundu, Butembo, 

Mbandaka, and Bunia at 2- and 3-week lead times. Boma and Matadi stations emerge in early batch at 

all lead times, though Bunia comes early only at the 4-week lead time. The ECMWF model shows near 

normal forecasts for Kinshasa-djili, Kinshasa-Binza, Bandundu, Butembo and MBandaka at all lead 

times, while Lubumbashi, Boma, Matadi and Bunia appear for all lead times as underestimated forecasts. 

 

In order to explore potential application bias correction to model forecasts, an additional threshold of 1 

mm was applied to detect eventual upgrading. For both countries, forecasts over many stations (except 

Edea and Bafia for Cameroon, and Matadi, Bunia, Mbandaka and Butembo for DRC) are clearly 

improved tending to be more normal. 

 

2) Qualitative analysis  

 

The mean biases of models derived from comparison between forecast and observed dry spell lengths 

over Cameroon and the DRC are shown in figures 14 and 15, respectively. A qualitative analysis of these 

figures (Figures 14a and 15a) at 0.1 mm threshold (below which a day is considered dry) are recapitulated 

in tables 8 and 9 for Cameroon and the DRC stations, respectively. It appears that models have a 

propensity to forecast near-normal events except in the southern humid forest agroecological zone in 

Cameroon and in the far-western part of the DRC, whereby dry spells are underforecasted. These results 

and more explanation are recapitulated in table 8. 

 

Table 8   

Propensity of models to forecast dry spells over Cameroon 

 

HINDCA SUDANO- ADAMAW WESTERN ATLANTIC SOUTHERN 
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ST SAHELIAN A 

PLATEAU 

HIGHLANDS COAST HUMID 

FOREST 

 Maro

ua 

Garo

ua 

Ngaoundéré Bame

nda 

Bafouss

am 

Kri

bi 

Tik

o 

Ede

a 

Bafi

a 

Yokadou

ma 

BoM N N N N U N N N U U 

CMA N N N N N N N U U U 

ECMWF U N N N N N N N U U 

 Key -  N: near-normal to normal, U: underestimation, NA: not available 

 

At 1 mm threshold in Cameroon and the DRC (figures 14b and 15b), results are approximately similar 

to those at 0.1 mm in most cases but with some weak overestimation of dry spells lengths in very few 

cases for the models BoM and CMA (two cases or less). 

 

Table 9 

Models propensity to forecast dry spells over the DRC  

 

HINDCA

ST 

WESTERN CENTR

AL 

SOUTHER

N 

EASTERN 

 Mband

aka 

Bandu

ndu 

K-

djili 

K-

binza 

Bo

ma 

Mata

di 

Kananga Lumbumbas

hi 

Butem

bo 

Bun

ia 

BoM N N N U U U N N N U 

CMA N N N N U U NA N N N 

ECMWF N N N N U U NA U N U 

 Key - N: near-normal to normal, U: underestimation, NA: not available 

 

5.1.2.2 Models’ skill scores 

 

Figure 16 shows frequency bias of subseasonal to seasonal model dry spell lengths (BoM, CMA and 

ECMWF) as a function of forecast lead times for 0.1 and 1 mm thresholds over Cameroon. The BoM 

model displays strong underestimated forecasts (with frequency bias ranging between 0 and 0.1) of dry 

spells at almost all stations, except Maroua at all lead times, and Yokadouma at 2-week lead times with 

a frequency bias range of 0.1 to 0.2. The CMA model gives a picture of near normal forecasts (with a 

frequency bias of 0.5 to 1.0) only in Maroua at 2- and 3-week lead times, while for other stations 

forecasts are underestimated with a frequency bias variation more or less of 0 to 0.5 at all lead times. 
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The ECMWF model depicts near normal forecasts (frequency bias of 0.6 to 0.7) in Bamenda only at a 

2-week lead time, while the others are underestimated (frequency bias of 0 to 0.4) at all lead times. 

 

Figure 16 

Frequency bias of S2S models dry spell lengths as function of forecast lead times for 0.1 and 1 

mm thresholds over Cameroon   

 

 

  
(a) (b) 

 

As for the DRC, figure 17 shows a frequency bias of S2S model dry spells lengths (BoM, CMA and 

ECMWF) as a function of forecast lead times for 0.1 and 1 mm thresholds. For a 0.1-mm threshold in 

the DRC, all the results also portray a constant field illustrating relative weak frequency bias ranging 

between 0 and 0.1 at all lead times (figure 17a). |The BoM model comes into sight as underestimating 

dry spells for all stations and at all lead times (frequency bias 0 to 0.3). The CMA model shows no skill 

in Kananga and forecasts dry spell frequency at Kinshasa-Binza at 2-weeks lead time quite well. The 

CMA model also slightly underestimates dry spell frequency at Lubumbashi, Kinshasa-ndjili, Bandundu 

and Boma for different lead times. Low skills are recorded at the Butembo, Matadi, Mbandaka and Bunia 

stations with strong underestimation of dry spell events.  The ECMWF model also could not detect 

Kananga, but shows near normal forecasts for Kinshasa-djili, Bandundu, and Butembo at 2- and 4-week 

lead times, whilst the remainder come out at various lead times as underestimated (frequency bias 0 to 

0.4) forecasts. 

 

Figure 17 

Frequency bias of S2S models dry spell lengths as a function of forecast lead times for 0.1 and 1 

mm thresholds for the DRC  
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(a) (b) 

 

In order to explore potential application bias correction to model forecasts as usual, an extra threshold of 

1 mm was applied on forecasts to detect an eventual subsequent improvement. Analyses of the results 

(figures not shown) shows that for this threshold, the forecasts of the CMA model followed by BoM 

were clearly improved over the DRC and Cameroon. 

 

5.2 Forecast evaluation: onset date of the 2015 growing season  

 

In this section, the skill of model forecasts to capture onset dates of the growing season in 2015 is 

examined. Analyses start with computation of observed onset dates of the growing season using an 

operational threshold of 20 mm (see section 4.2.2.1), followed by assessment of GCMs forecasts (at 2-, 

3- and 4-week lead time) to detect these onsets. Other thresholds (5 mm, 10 mm and 15 mm) were applied 

to forecasts to detect the onset date in order to explore potential application of bias correction to model 

predictions.  

5.2.1 Observed onset dates 

 

Figure 18 shows the start dates of the growing season for the selected stations over the area of study, 

based principally on observed meteorological station data. 

 

Figure 18 

Observed onset dates of growing season for 2015 at selected Met stations in  

Cameroon and DRC 
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For most stations over southern Cameroon, the onset date of growing season occurs during March, except 

for the Bafia and Tiko stations for which the dates fall in and out of their 1971-2000 climate (see figures 

4 and 18). Over central Cameroon, and in the Adamawa Highland area, the onset is registered in April, 

and in June for northern stations at Garoua and Maroua.  

 

Concerning DRC, the growing season, called season A, begins in September for the three stations 

approximately in the middle of the country (Mbandaka, Bandundu, Kananga). For the north-eastern and 

the southern parts of the country, onset occurs in October and November respectively. 

5.2.2 Models verification for 2015 onset dates 

 

a) Operational threshold of 20 mm 

 

The deviation, in terms of number of days, from the observation and forecast onset dates of the 

2015 growing season is shown in figure 19. Detection of the onset was made for five subseasonal to 

seasonal forecasting models (BoM, CMA, ECMWF, NCEP and HCMR), at lead times of 2, 3 and 4 

weeks. Onset dates were computed using observations and model forecasts with a 20-mm precipitation 

threshold. Positive (negative) value indicates late (earlier) start of forecasted onset of growing season 

compared with observations. A station with no record indicates a forecast daily rainfall amount below a 

20-mm threshold, leading to no detection of onset date of the growing season.  
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One striking feature is all the stations with no record, at all lead times, in BoM and HCMR (figure 19). 

This suggests that BoM and HCMR are not proficient at capturing the onset date of growing season in 

DRC and Cameroon based on a 20-mm precipitation threshold. This result may be related to an 

underestimation of heavy rains in BoM and HCRM compared with observations. 

 

In general, CMA shows good skill to detect onset dates of the growing season at many stations compared 

with other models. At a 2-week lead time for northern Cameroon (north of 7°N) and DRC, CMA predicts 

the growing season onset from 3 days to 5 weeks in advance (earlier start) compared with observations. 

This is illustrated by negative values of between -3 and -35 (see figure 19) over these areas, respectively.  

 

Over southern Cameroon (south of 7°N), along the coastal region, onset of the growing season is forecast 

later in CMA compared with observations. At the Garoua station (see figures 4 and 19), at 3- and 4-week 

lead times, CMA forecasts the start of the growing season earlier and up to 10 days ahead the date 

obtained at a 2-week lead time. In Maroua (figures 4 and 19) the forecast onset date is still earlier and 

around 13 days after the onset at a 2-week lead time (figure 19), and close to observations. At 

Ngaoundéré, the forecast onset date is not consistent with a lead time of 2 to 4 weeks. Hence, over 

northern Cameroon, there is no clear signal of improvement or decay of the CMA’s skill to forecast 

growing season onset dates with 2- to 4-week lead times. This characteristic of CMA’s forecast across 

lead times in northern Cameroon is also observed in the south and in the DRC. The CMA model shows 

better forecast growing season start date at the 2-week lead time in Bafoussam, Kribi, Tiko and Butembo, 

whereas for Edéa in Cameroon and Goma in DRC it is 3 weeks, or 4-weeks for Bamenda in Cameroon 

and Lubumbashi in the DRC (see figures 4 and 19).  

 

The ECMWF model shows some skills over coastal region in Cameroon and north-eastern DRC.  
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In these areas, the model forecast onset date is in advance compared with observation at all lead times, 

whereas NCEP presents some results for Cameroon and north-western DRC. Results clearly show that 

for a 20-mm precipitation threshold, models BoM and HCMR cannot be used whatever the considered 

lead time. However, other models do better and CMA shows greater skill for all lead times, followed by 

ECMWF and NCEP. 

 

a) Analysis for other precipitation thresholds 

 

The weakness of models in the detection of the growing season onset with a 20-mm threshold (figure 

19) suggests that GCMs forecast might underestimate heavy rain events. This is a well-known issue of 

the coarse resolution model (Kendon et al., 2012). Thus, the analysis went further by assessing forecast 

onset dates by reducing the threshold to 15 mm, 10 mm and 5 mm (see figures 20 to 22). The reason 

behind assessing skills of GCMs prediction using other thresholds was to investigate potential application 

of bias correction on the outputs of the models. The actual objective was to investigate precipitation 

threshold for which the forecast onset dates fit better results with observations using a threshold of 20 

mm. 

 

Figure 20 shows the biases between simulated and observed start dates of the growing season for a 

precipitation threshold of 15 mm. For this threshold, BoM and HCMR are not able to capture the onset 

growing season date, except at the Bunia and Bafia stations. At these stations, forecast dates at 3-week 

lead time are18 and 36 days in advance, respectively, compared with observations. But, CMA and NCEP 

simulated dates are almost similar to those obtained with a 20-mm threshold (figures 19 and 20). These 

models show better skill over southern Cameroon for all lead times (figure 20). As expected, the number 

of stations where models predict start dates of the growing season has increased compared with results 

at the 20-mm threshold. Accordingly, the results for a 10-mm threshold (figure 21) show an increase 

number of stations with a value of forecast growing season onset dates for all models. CMA shows some 

improvement (figure 21) compared with a 20-mm (figure 19) threshold with less than 2 weeks between 

forecast and observed onset dates. Moreover, CMA seems to better forecast the dates over the region 

compared with other models. BoM shows better skill to capture the onset dates over north-eastern DRC 

at 2- and 3-week lead times. Some models still lack records at many stations in northern Cameroon and 

the DRC. 

 

All models are able to simulate onset dates of the growing season for 5 mm precipitation thresholds, at 

almost all stations (figure 22). Broadly, at 2-week lead time over the region, models forecast earlier onset 

dates of the growing season. Few stations exhibit delays in forecast onset dates over southern Cameroon 

and western DRC (figure 22 and figure 19). Over central Cameroon, BoM, CMA and ECMWF show 

better skill to detect onset dates compared with observations. The skill of BoM over this area remains 

consistent across lead times. In other part of the regions, all models predict onset of the growing season 

at least three weeks in advance at all lead times.  
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Assessment of forecast onset dates by reducing the threshold show an improvement in the number of 

stations were onset dates are forecast. However, there is no clear evidence of bias reduction compared 

with observed onset dates using a threshold of 20 mm. 
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6 Partnership and Capacity-building 

 

An important goal of this pilot project was to mobilize multi-institutional participation and partnerships. 

During the project’s second month a meeting was organized in Yaoundé, which aimed to strengthen team 

members on subseasonal to seasonal prediction, build and strengthen links with the International 

Research Institute (IRI) for Climate and Society of Columbia. The institute has extensive experience in 

forecasting and leads many activities in this area. The head of Climate Group at the institute, Andrew 

Robertson, is also co-chair of the steering group of the S2S prediction project. He trained the team on 

methods and data used for prediction.  

 

 
 

 

Materials of the meeting were posted to the following link:  

http://wiki.iri.columbia.edu/index.php?n=Climate.S2S-CentralAfrica 

 

7 Conclusion and Outlooks 
  

The study made here aimed to evaluate the ability of global IRID (GCMs) to provide useful forecast 

products relevant to agriculture in Central Africa. Based on the subseasonal to seasonal (S2S) database, 

analyses aimed to assess the skill of different models to predict metrics useful for agricultural planning 

over the region. This database is an opportunity to explore forecasting events at S2S timescale, in order 

to improve prototype climate predictions over Central Africa.  

  

To achieve the above goal, identification of farmers’ needs for climate information was a necessary step. 

This was crucial in developing meteorological metrics useful for farming. Based on climate hazards and 

what farmers identified as elements which have negative impacts on crop production, researchers from 

http://wiki.iri.columbia.edu/index.php?n=Climate.S2S-CentralAfrica
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universities and from institutes of agriculture jointly designed metrics focusing on these problems.  

Among these metrics, onsets of growing season and maximum dry spell length duration were selected to 

assess global climate model forecasts. Researchers and forecasters co-designed the criteria used to 

compute these precipitation-based metrics. According to these criteria, five global model (BoM, CMA, 

ECMWF, HCMR, and NCEP) forecasts were selected from the S2S database. Forecast data from the 

five models were evaluated, and for hindcast analysis only BoM, CMA, and ECMWF were assessed. 

Both analyses were performed at 2-, 3- and 4-week lead times for each model. 

  

Hindcast analysis shows that for the growing season onset date in Cameroon all models seem to depict a 

well-observed average (near normal) category. CMA was more skillful compared with ECMWF, even 

though both models showed strong deficiencies for earlier and later onset date categories. BoM displayed 

better skill for all onset categories.  In DRC, all models present deficiencies to predict an observed early 

onset date category. For others, models of this category showed improvement, with highest performance 

for BoM; whereas, skills of CMA and ECMWF were close together. 

  

The dry spell length analysis showed that in the southern humid forest area of Cameroon the models 

made underestimations, while for the other areas the near-normal-to-normal category dominated and 

models showed good skill. In DRC, across the different climatic areas, according to dominance of the 

near-normal category, there is a general tendency of good skill to forecast dry spell length. But some 

local specificities are noticeable. For the western region, over the inland area, all the models show good 

skill, while at coastal stations skill is weak.  

  

Additional agrometeorological metrics such as water availability during the growing season can be 

investigated after this study. This is because subsesasonal to seasonal forecasts can help farmers and 

others make decisions on cropping patterns for onset dates, dry spell occurrence, rainfall water 

availability in dry to driest conditions covering the full growing season. This is so that supplemental 

irrigation may be applied, which may require forecasts with lead times of 14 to 30 days. Additionally, 

the remaining countries of Central Africa should be involved.   
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